gFun/src/main.py

169 lines
7.3 KiB
Python
Raw Normal View History

2021-01-26 15:10:32 +01:00
from argparse import ArgumentParser
from data.dataset_builder import MultilingualDataset
from funnelling import *
from util.common import MultilingualIndex, get_params, get_method_name
from util.evaluation import evaluate
from util.results_csv import CSVlog
from view_generators import *
2021-01-26 15:19:09 +01:00
from time import time
2021-01-26 15:10:32 +01:00
def main(args):
assert args.post_embedder or args.muse_embedder or args.wce_embedder or args.gru_embedder or args.bert_embedder, \
'empty set of document embeddings is not allowed!'
print('Running generalized funnelling...')
data = MultilingualDataset.load(args.dataset)
data.set_view(languages=['it', 'fr'])
data.show_dimensions()
lX, ly = data.training()
lXte, lyte = data.test()
# Init multilingualIndex - mandatory when deploying Neural View Generators...
if args.gru_embedder or args.bert_embedder:
multilingualIndex = MultilingualIndex()
lMuse = MuseLoader(langs=sorted(lX.keys()), cache=args.muse_dir)
multilingualIndex.index(lX, ly, lXte, lyte, l_pretrained_vocabulary=lMuse.vocabulary())
# Init ViewGenerators and append them to embedder_list
embedder_list = []
if args.post_embedder:
posteriorEmbedder = VanillaFunGen(base_learner=get_learner(calibrate=True), n_jobs=args.n_jobs)
embedder_list.append(posteriorEmbedder)
if args.muse_embedder:
museEmbedder = MuseGen(muse_dir=args.muse_dir, n_jobs=args.n_jobs)
embedder_list.append(museEmbedder)
if args.wce_embedder:
wceEmbedder = WordClassGen(n_jobs=args.n_jobs)
embedder_list.append(wceEmbedder)
if args.gru_embedder:
rnnEmbedder = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=args.gru_wce, batch_size=256,
nepochs=args.nepochs, gpus=args.gpus, n_jobs=args.n_jobs)
embedder_list.append(rnnEmbedder)
if args.bert_embedder:
bertEmbedder = BertGen(multilingualIndex, batch_size=4, nepochs=10, gpus=args.gpus, n_jobs=args.n_jobs)
embedder_list.append(bertEmbedder)
# Init DocEmbedderList (i.e., first-tier learners or view generators) and metaclassifier
docEmbedders = DocEmbedderList(embedder_list=embedder_list, probabilistic=True)
meta = MetaClassifier(meta_learner=get_learner(calibrate=False, kernel='rbf'),
meta_parameters=get_params(optimc=args.optimc))
# Init Funnelling Architecture
gfun = Funnelling(first_tier=docEmbedders, meta_classifier=meta)
# Training ---------------------------------------
print('\n[Training Generalized Funnelling]')
time_init = time()
time_tr = time()
gfun.fit(lX, ly)
time_tr = round(time() - time_tr, 3)
print(f'Training completed in {time_tr} seconds!')
# Testing ----------------------------------------
print('\n[Testing Generalized Funnelling]')
time_te = time()
ly_ = gfun.predict(lXte)
l_eval = evaluate(ly_true=lyte, ly_pred=ly_)
time_te = round(time() - time_te, 3)
print(f'Testing completed in {time_te} seconds!')
# Logging ---------------------------------------
print('\n[Results]')
results = CSVlog(args.csv_dir)
metrics = []
for lang in lXte.keys():
macrof1, microf1, macrok, microk = l_eval[lang]
metrics.append([macrof1, microf1, macrok, microk])
print(f'Lang {lang}: macro-F1 = {macrof1:.3f} micro-F1 = {microf1:.3f}')
if results is not None:
_id, _dataset = get_method_name(args)
results.add_row(method='gfun',
setting=_id,
optimc=args.optimc,
sif='True',
zscore='True',
l2='True',
dataset=_dataset,
time_tr=time_tr,
time_te=time_te,
lang=lang,
macrof1=macrof1,
microf1=microf1,
macrok=macrok,
microk=microk,
notes='')
print('Averages: MF1, mF1, MK, mK', np.round(np.mean(np.array(metrics), axis=0), 3))
overall_time = round(time() - time_init, 3)
exit(f'\nExecuted in: {overall_time} seconds!')
if __name__ == '__main__':
parser = ArgumentParser(description='Run generalized funnelling, A. Moreo, A. Pedrotti and F. Sebastiani')
parser.add_argument('dataset', help='Path to the dataset')
parser.add_argument('-o', '--output', dest='csv_dir',
help='Result file (default ../csv_log/gfun_results.csv)', type=str,
default='csv_logs/gfun/gfun_results.csv')
parser.add_argument('-x', '--post_embedder', dest='post_embedder', action='store_true',
help='deploy posterior probabilities embedder to compute document embeddings',
default=False)
parser.add_argument('-w', '--wce_embedder', dest='wce_embedder', action='store_true',
help='deploy (supervised) Word-Class embedder to the compute document embeddings',
default=False)
parser.add_argument('-m', '--muse_embedder', dest='muse_embedder', action='store_true',
help='deploy (pretrained) MUSE embedder to compute document embeddings',
default=False)
parser.add_argument('-b', '--bert_embedder', dest='bert_embedder', action='store_true',
help='deploy multilingual Bert to compute document embeddings',
default=False)
parser.add_argument('-g', '--gru_embedder', dest='gru_embedder', action='store_true',
help='deploy a GRU in order to compute document embeddings',
default=False)
parser.add_argument('-c', '--c_optimize', dest='optimc', action='store_true',
help='Optimize SVMs C hyperparameter',
default=False)
parser.add_argument('-n', '--nepochs', dest='nepochs', type=str,
help='Number of max epochs to train Recurrent embedder (i.e., -g)')
parser.add_argument('-j', '--n_jobs', dest='n_jobs', type=int,
help='Number of parallel jobs (default is -1, all)',
default=-1)
parser.add_argument('--muse_dir', dest='muse_dir', type=str,
help='Path to the MUSE polylingual word embeddings (default ../embeddings)',
default='../embeddings')
parser.add_argument('--gru_wce', dest='gru_wce', action='store_true',
help='Deploy WCE embedding as embedding layer of the GRU View Generator',
default=False)
parser.add_argument('--gru_dir', dest='gru_dir', type=str,
help='Set the path to a pretrained GRU model (i.e., -g view generator)',
default=None)
parser.add_argument('--bert_dir', dest='bert_dir', type=str,
help='Set the path to a pretrained mBERT model (i.e., -b view generator)',
default=None)
parser.add_argument('--gpus', help='specifies how many GPUs to use per node',
default=None)
args = parser.parse_args()
main(args)