implemented method to compute WCE only for well represented classes -

refactored MLE class in order to support WCE, standard embeddings and combinations
This commit is contained in:
andrea 2019-12-29 11:54:05 +01:00
parent 56ee88220b
commit 0e66fbf197
3 changed files with 60 additions and 12 deletions

View File

@ -125,9 +125,10 @@ if __name__ == '__main__':
result_id = dataset_file + 'PolyEmbedd_andrea_' + _config_id + ('_optimC' if op.optimc else '')
PLE_test = False
PLE_test = True
if PLE_test:
ple = PolylingualEmbeddingsClassifier(wordembeddings_path='/home/moreo/CLESA/PolylingualEmbeddings',
ple = PolylingualEmbeddingsClassifier(wordembeddings_path='/home/andreapdr/CLESA/',
config = config,
learner=get_learner(calibrate=False),
c_parameters=get_params(dense=False),
n_jobs=op.n_jobs)
@ -143,7 +144,11 @@ if __name__ == '__main__':
macrof1, microf1, macrok, microk = ple_eval[lang]
metrics.append([macrof1, microf1, macrok, microk])
print('Lang %s: macro-F1=%.3f micro-F1=%.3f' % (lang, macrof1, microf1))
results.add_row('MLE', 'svm', 'no', config['we_type'],
'no','no', op.optimc, op.dataset.split('/')[-1], ple.time,
lang, macrof1, microf1, macrok, microk, '')
print('Averages: MF1, mF1, MK, mK', np.mean(np.array(metrics), axis=0))
exit()
print(f'### PolyEmbedd_andrea_{_config_id}\n')
@ -151,7 +156,7 @@ if __name__ == '__main__':
config=config,
first_tier_learner=get_learner(calibrate=True),
meta_learner=get_learner(calibrate=False, kernel='rbf'),
first_tier_parameters=None, # get_params(dense=False),-->first_tier should not be optimized
first_tier_parameters=None, # TODO get_params(dense=False),--> first_tier should not be optimized - or not?
meta_parameters=get_params(dense=True),
n_jobs=op.n_jobs)
@ -169,5 +174,5 @@ if __name__ == '__main__':
results.add_row('PolyEmbed_andrea', 'svm', _config_id, config['we_type'],
(config['max_label_space'], classifier.best_components),
config['dim_reduction_unsupervised'], op.optimc, op.dataset.split('/')[-1], classifier.time,
lang, macrof1, microf1, macrok, microk, '')
lang, macrof1, microf1, macrok, microk, 'min_prevalence = 0')
print('Averages: MF1, mF1, MK, mK', np.mean(np.array(metrics), axis=0))

View File

@ -226,6 +226,18 @@ class StorageEmbeddings:
return
def _add_embeddings_supervised(self, docs, labels, reduction, max_label_space, voc):
only_well_represented_C = False # TODO testing
if only_well_represented_C:
labels = labels.copy()
min_prevalence = 0
print(f'# REDUCING LABELS TO min_prevalence = {min_prevalence} in order to compute WCE Matrix ...')
langs = list(docs.keys())
well_repr_cats = np.logical_and.reduce([labels[lang].sum(axis=0)>min_prevalence for lang in langs])
# lY = {lY[lang][:, well_repr_cats] for lang in langs} TODO not clear
for lang in langs:
labels[lang] = labels[lang][:, well_repr_cats]
print(f'Target number reduced to: {labels[lang].shape[1]}\n')
for lang in docs.keys(): # compute supervised matrices S - then apply PCA
print(f'# [supervised-matrix] for {lang}')
self.lang_S[lang] = get_supervised_embeddings(docs[lang], labels[lang],

View File

@ -461,7 +461,7 @@ class PolylingualEmbeddingsClassifier:
}
url: https://github.com/facebookresearch/MUSE
"""
def __init__(self, wordembeddings_path, learner, c_parameters=None, n_jobs=-1):
def __init__(self, wordembeddings_path, config, learner, c_parameters=None, n_jobs=-1):
"""
:param wordembeddings_path: the path to the directory containing the polylingual embeddings
:param learner: the learner
@ -469,11 +469,15 @@ class PolylingualEmbeddingsClassifier:
:param n_jobs: the number of concurrent threads
"""
self.wordembeddings_path = wordembeddings_path
self.config = config
self.learner = learner
self.c_parameters=c_parameters
self.n_jobs = n_jobs
self.lang_tfidf = {}
self.model = None
self.languages = []
self.lang_word2idx = dict()
self.embedding_space = None
def fit_vectorizers(self, lX):
for lang in lX.keys():
@ -483,6 +487,27 @@ class PolylingualEmbeddingsClassifier:
tfidf.fit(docs)
self.lang_tfidf[lang] = tfidf
def vectorize(self, lX, prediction=False):
langs = list(lX.keys())
print(f'# tfidf-vectorizing docs')
if prediction:
for lang in langs:
assert lang in self.lang_tfidf.keys(), 'no tf-idf for given language'
tfidf_vectorizer = self.lang_tfidf[lang]
lX[lang] = tfidf_vectorizer.transform(lX[lang])
return self
for lang in langs:
tfidf_vectorizer = TfidfVectorizer(sublinear_tf=True, use_idf=True)
self.languages.append(lang)
tfidf_vectorizer.fit(lX[lang])
lX[lang] = tfidf_vectorizer.transform(lX[lang])
self.lang_word2idx[lang] = tfidf_vectorizer.vocabulary_
self.lang_tfidf[lang] = tfidf_vectorizer
return self
def embed(self, docs, lang):
assert lang in self.lang_tfidf, 'unknown language'
tfidf_vectorizer = self.lang_tfidf[lang]
@ -515,13 +540,17 @@ class PolylingualEmbeddingsClassifier:
tinit = time.time()
langs = list(lX.keys())
WEtr, Ytr = [], []
self.fit_vectorizers(lX) # if already fit, does nothing
for lang in langs:
WEtr.append(self.embed(lX[lang], lang))
Ytr.append(ly[lang])
# self.fit_vectorizers(lX) # if already fit, does nothing
self.vectorize(lX)
# config = {'unsupervised' : False, 'supervised': True}
self.embedding_space = StorageEmbeddings(self.wordembeddings_path).fit(self.config, lX, self.lang_word2idx, ly)
WEtr = self.embedding_space.predict(self.config, lX)
# for lang in langs:
# WEtr.append(self.embed(lX[lang], lang)) # todo embed with other matrices
# Ytr.append(ly[lang])
WEtr = np.vstack(WEtr)
Ytr = np.vstack(Ytr)
WEtr = np.vstack([WEtr[lang] for lang in langs])
Ytr = np.vstack([ly[lang] for lang in langs])
self.embed_time = time.time() - tinit
print('fitting the WE-space of shape={}'.format(WEtr.shape))
@ -535,8 +564,10 @@ class PolylingualEmbeddingsClassifier:
:param lX: a dictionary {language_label: [list of preprocessed documents]}
"""
assert self.model is not None, 'predict called before fit'
self.vectorize(lX, prediction=True)
langs = list(lX.keys())
lWEte = {lang:self.embed(lX[lang], lang) for lang in langs} # parallelizing this may consume too much memory
lWEte = self.embedding_space.predict(self.config, lX)
# lWEte = {lang:self.embed(lX[lang], lang) for lang in langs} # parallelizing this may consume too much memory
return _joblib_transform_multiling(self.model.predict, lWEte, n_jobs=self.n_jobs)
def predict_proba(self, lX):