Set arguments in order to reproduce 'master' performances with Neural setting

This commit is contained in:
andrea 2021-02-02 11:23:55 +01:00
parent bca0b9ab7c
commit 10bed81916
4 changed files with 44 additions and 11 deletions

22
main.py
View File

@ -15,9 +15,21 @@ def main(args):
print('Running generalized funnelling...')
data = MultilingualDataset.load(args.dataset)
# data.set_view(languages=['it', 'da'])
data.set_view(languages=['it', 'da'])
data.show_dimensions()
lX, ly = data.training()
# Testing zero shot experiments
# zero_shot_setting = True
# if zero_shot_setting:
# # _lX = {}
# _ly = {}
# train_langs = ['it']
# for train_lang in train_langs:
# # _lX[train_lang] = lX[train_lang]
# _ly[train_lang] = ly[train_lang]
# ly = _ly
lXte, lyte = data.test()
# Init multilingualIndex - mandatory when deploying Neural View Generators...
@ -33,7 +45,7 @@ def main(args):
embedder_list.append(posteriorEmbedder)
if args.muse_embedder:
museEmbedder = MuseGen(muse_dir=args.muse_dir, n_jobs=args.n_jobs)
museEmbedder = MuseGen(muse_dir=args.muse_dir, n_jobs=args.n_jobs, zero_shot=True)
embedder_list.append(museEmbedder)
if args.wce_embedder:
@ -99,7 +111,7 @@ def main(args):
microf1=microf1,
macrok=macrok,
microk=microk,
notes='')
notes=f'Train langs: {sorted(lX.keys())}')
print('Averages: MF1, mF1, MK, mK', np.round(np.mean(np.array(metrics), axis=0), 3))
overall_time = round(time.time() - time_init, 3)
@ -112,8 +124,8 @@ if __name__ == '__main__':
parser.add_argument('dataset', help='Path to the dataset')
parser.add_argument('-o', '--output', dest='csv_dir', metavar='',
help='Result file (default ../csv_logs/gfun/gfun_results.csv)', type=str,
default='../csv_logs/gfun/gfun_results.csv')
help='Result file (default csv_logs/gfun/gfun_results.csv)', type=str,
default='csv_logs/gfun/gfun_results.csv')
parser.add_argument('-x', '--post_embedder', dest='post_embedder', action='store_true',
help='deploy posterior probabilities embedder to compute document embeddings',

4
run.sh
View File

@ -1,6 +1,8 @@
#!/usr/bin/env bash
python main.py /home/moreo/CLESA/rcv2/rcv1-2_doclist_trByLang1000_teByLang1000_processed_run0.pickle -g --gpus 0
echo Running Zero-shot experiments [output at csv_logs/gfun/zero_shot_gfun.csv]
python main.py /home/moreo/CLESA/rcv2/rcv1-2_doclist_trByLang1000_teByLang1000_processed_run0.pickle -m -o csv_logs/gfun/zero_shot_gfun.csv --gpus 0
#for i in {0..10..1}
#do

View File

@ -378,7 +378,7 @@ def get_method_name(args):
for i, conf in enumerate(_id_conf):
if conf:
_id += _id_name[i]
_id = _id if not args.gru_wce else _id + '_wce'
_id = _id if not args.rnn_wce else _id + '_wce'
_dataset_path = args.dataset.split('/')[-1].split('_')
dataset_id = _dataset_path[0] + _dataset_path[-1]
return _id, dataset_id

View File

@ -99,7 +99,7 @@ class MuseGen(ViewGen):
View Generator (m): generates document representation via MUSE embeddings (Fasttext multilingual word
embeddings). Document embeddings are obtained via weighted sum of document's constituent embeddings.
"""
def __init__(self, muse_dir='../embeddings', n_jobs=-1):
def __init__(self, muse_dir='../embeddings', zero_shot=False, n_jobs=-1):
"""
Init the MuseGen.
:param muse_dir: string, path to folder containing muse embeddings
@ -111,6 +111,7 @@ class MuseGen(ViewGen):
self.langs = None
self.lMuse = None
self.vectorizer = TfidfVectorizerMultilingual(sublinear_tf=True, use_idf=True)
self.zero_shot = zero_shot
def fit(self, lX, ly):
"""
@ -135,16 +136,34 @@ class MuseGen(ViewGen):
:param lX: dict {lang: indexed documents}
:return: document projection to the common latent space.
"""
lX = self.vectorizer.transform(lX)
# Testing zero-shot experiments
if self.zero_shot:
lX = {l: self.vectorizer.vectorizer[l].transform(lX[l]) for l in self.langs if lX[l] is not None}
else:
lX = self.vectorizer.transform(lX)
XdotMUSE = Parallel(n_jobs=self.n_jobs)(
delayed(XdotM)(lX[lang], self.lMuse[lang], sif=True) for lang in self.langs)
lZ = {lang: XdotMUSE[i] for i, lang in enumerate(self.langs)}
delayed(XdotM)(lX[lang], self.lMuse[lang], sif=True) for lang in sorted(lX.keys()))
lZ = {lang: XdotMUSE[i] for i, lang in enumerate(sorted(lX.keys()))}
lZ = _normalize(lZ, l2=True)
return lZ
def fit_transform(self, lX, ly):
print('## NB: Calling fit_transform!')
if self.zero_shot:
return self.fit(lX, ly).transform(self.zero_shot_experiments(lX))
return self.fit(lX, ly).transform(lX)
def zero_shot_experiments(self, lX, train_langs: list = ['it']):
print(f'# Zero-shot setting! Training langs will be set to: {sorted(train_langs)}')
_lX = {}
for lang in self.langs:
if lang in train_langs:
_lX[lang] = lX[lang]
else:
_lX[lang] = None
lX = _lX
return lX
class WordClassGen(ViewGen):
"""