Implemented funnelling architecture
This commit is contained in:
parent
93436fc596
commit
111f759cd4
|
|
@ -28,14 +28,12 @@ def main(args):
|
|||
multilingualIndex.index(lX, ly, lXte, lyte, l_pretrained_vocabulary=lMuse.vocabulary())
|
||||
|
||||
# posteriorEmbedder = VanillaFunGen(base_learner=get_learner(calibrate=True), n_jobs=N_JOBS)
|
||||
# museEmbedder = MuseGen(muse_dir=EMBEDDINGS_PATH, n_jobs=N_JOBS)
|
||||
# wceEmbedder = WordClassGen(n_jobs=N_JOBS)
|
||||
museEmbedder = MuseGen(muse_dir=EMBEDDINGS_PATH, n_jobs=N_JOBS)
|
||||
wceEmbedder = WordClassGen(n_jobs=N_JOBS)
|
||||
# rnnEmbedder = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=False, batch_size=256,
|
||||
# nepochs=250, gpus=args.gpus, n_jobs=N_JOBS)
|
||||
bertEmbedder = BertGen(multilingualIndex, batch_size=4, nepochs=1, gpus=args.gpus, n_jobs=N_JOBS)
|
||||
bertEmbedder.transform(lX)
|
||||
# bertEmbedder = BertGen(multilingualIndex, batch_size=4, nepochs=1, gpus=args.gpus, n_jobs=N_JOBS)
|
||||
|
||||
exit()
|
||||
docEmbedders = DocEmbedderList([museEmbedder, wceEmbedder])
|
||||
|
||||
gfun = Funnelling(first_tier=docEmbedders)
|
||||
|
|
|
|||
Loading…
Reference in New Issue