cleared up folders

This commit is contained in:
andrea 2021-01-19 13:11:16 +01:00
parent bfcd97d1c6
commit 34676167e8
1 changed files with 0 additions and 95 deletions

View File

@ -1,95 +0,0 @@
class CustomMetrics(Metric):
def __init__(
self,
num_classes: int,
beta: float = 1.0,
threshold: float = 0.5,
average: str = "micro",
multilabel: bool = False,
compute_on_step: bool = True,
dist_sync_on_step: bool = False,
process_group: Optional[Any] = None,
):
super().__init__(
compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group,
)
self.num_classes = num_classes
self.beta = beta
self.threshold = threshold
self.average = average
self.multilabel = multilabel
allowed_average = ("micro", "macro", "weighted", None)
if self.average not in allowed_average:
raise ValueError('Argument `average` expected to be one of the following:'
f' {allowed_average} but got {self.average}')
self.add_state("true_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum")
self.add_state("predicted_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum")
self.add_state("actual_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum")
def update(self, preds: torch.Tensor, target: torch.Tensor):
"""
Update state with predictions and targets.
Args:
preds: Predictions from model
target: Ground truth values
"""
true_positives, predicted_positives, actual_positives = _fbeta_update(
preds, target, self.num_classes, self.threshold, self.multilabel
)
self.true_positives += true_positives
self.predicted_positives += predicted_positives
self.actual_positives += actual_positives
def compute(self):
"""
Computes metrics over state.
"""
return _fbeta_compute(self.true_positives, self.predicted_positives,
self.actual_positives, self.beta, self.average)
def _fbeta_update(
preds: torch.Tensor,
target: torch.Tensor,
num_classes: int,
threshold: float = 0.5,
multilabel: bool = False
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
preds, target = _input_format_classification_one_hot(
num_classes, preds, target, threshold, multilabel
)
true_positives = torch.sum(preds * target, dim=1)
predicted_positives = torch.sum(preds, dim=1)
actual_positives = torch.sum(target, dim=1)
return true_positives, predicted_positives, actual_positives
def _fbeta_compute(
true_positives: torch.Tensor,
predicted_positives: torch.Tensor,
actual_positives: torch.Tensor,
beta: float = 1.0,
average: str = "micro"
) -> torch.Tensor:
if average == "micro":
precision = true_positives.sum().float() / predicted_positives.sum()
recall = true_positives.sum().float() / actual_positives.sum()
else:
precision = true_positives.float() / predicted_positives
recall = true_positives.float() / actual_positives
num = (1 + beta ** 2) * precision * recall
denom = beta ** 2 * precision + recall
new_num = 2 * true_positives
new_fp = predicted_positives - true_positives
new_fn = actual_positives - true_positives
new_den = 2 * true_positives + new_fp + new_fn
if new_den.sum() == 0:
# whats is the correct return type ? TODO
return 1.
return class_reduce(num, denom, weights=actual_positives, class_reduction=average)