moved .sh files

This commit is contained in:
andrea 2020-10-22 15:33:54 +02:00
parent 90f24dab8e
commit 526cf80b66
17 changed files with 34 additions and 38 deletions

View File

@ -5,12 +5,12 @@ runs='6 7 8 9' #0 1 2 3 4 5
for run in $runs
do
dataset=$dataset_path$run.pickle
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 Pr(views) concatenated (done up to run5)
#python main_gFun.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 Pr(views) concatenated (done up to run5)
python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 views concatenated
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -a -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -c -r -a -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -S -c -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -c -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -c -P -U -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -c -P -U -S -r -z --l2
#python main_gFun.py $dataset -o $logfile -P -U -S -c -r -a -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -U -c -r -a -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -S -c -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -U -c -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -c -P -U -r -z --l2
#python main_gFun.py $dataset -o $logfile -c -P -U -S -r -z --l2
done

View File

@ -5,12 +5,12 @@ runs='0 1 2 3 4 5 6 7 8 9'
for run in $runs
do
dataset=$dataset_path$run.pickle
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 Pr(views) concatenated
#python main_gFun.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 Pr(views) concatenated
python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 views concatenated
#python main_multimodal_cls.py $dataset -o $logfile -P -U -c -r -a -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -a -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -S -c -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -c -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -c -P -U -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -c -P -U -S -r -z --l2
#python main_gFun.py $dataset -o $logfile -P -U -c -r -a -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -U -S -c -r -a -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -S -c -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -U -c -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -c -P -U -r -z --l2
#python main_gFun.py $dataset -o $logfile -c -P -U -S -r -z --l2
done

View File

@ -1,6 +1,6 @@
import argparse
import torch.nn as nn
from torch.optim.lr_scheduler import StepLR, MultiStepLR
from torch.optim.lr_scheduler import StepLR
from dataset_builder import MultilingualDataset
from learning.transformers import load_muse_embeddings
from models.lstm_class import RNNMultilingualClassifier

View File

@ -1,6 +1,5 @@
import os
from dataset_builder import MultilingualDataset
from learning.learners import *
from util.evaluation import *
from optparse import OptionParser
from util.file import exists

View File

@ -2,15 +2,12 @@ import os
from dataset_builder import MultilingualDataset
# from learning.learners import *
# from learning.learners import FunnellingMultimodal
from learning.transformers import Funnelling, PosteriorProbabilitiesEmbedder, MetaClassifier, \
TfidfVectorizerMultilingual, DocEmbedderList, WordClassEmbedder, MuseEmbedder, FeatureSet2Posteriors, Voting
from learning.transformers import PosteriorProbabilitiesEmbedder, TfidfVectorizerMultilingual, WordClassEmbedder, MuseEmbedder, FeatureSet2Posteriors, Voting
from util.evaluation import *
from optparse import OptionParser
from util.file import exists
from util.results import PolylingualClassificationResults
from sklearn.svm import SVC
from util.util import get_learner, get_params
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
parser = OptionParser()

View File

@ -1,4 +1,4 @@
from main_mbert import *
from experiment_scripts.main_mbert import *
import pickle

View File

@ -7,10 +7,10 @@ logfile=./results/final_combinations_jrc.csv
# (no one seems to improve over standard funnelling [the improved version after A.1] with posteriors probabilities...)
# aggregation=concatenation
#python main_multimodal_cls.py $dataset -o $logfile -P -U -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -P -S -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -U -S -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -z --l2
#python main_gFun.py $dataset -o $logfile -P -U -r -z --l2
#python main_gFun.py $dataset -o $logfile -P -S -r -z --l2
#python main_gFun.py $dataset -o $logfile -U -S -r -z --l2
#python main_gFun.py $dataset -o $logfile -P -U -S -r -z --l2
#
##FeatureSetToPosteriors (aggregation mean)
@ -20,10 +20,10 @@ python main_multimodal_cls.py $dataset -o $logfile -U -S -r -a -z --l2 --allprob
python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -a -z --l2 --allprob
##FeatureSetToPosteriors
#python main_multimodal_cls.py $dataset -o $logfile -P -U -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -S -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -U -S -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -U -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -S -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -U -S -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -U -S -r -z --l2 --allprob
#MajorityVoting
#python main_majorityvoting_cls.py $dataset -o $logfile -P -U -r

View File

@ -7,10 +7,10 @@ logfile=./results/final_combinations_rcv.csv
# (no one seems to improve over standard funnelling [the improved version after A.1] with posteriors probabilities...)
# aggregation=concatenation
#python main_multimodal_cls.py $dataset -o $logfile -P -U -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -P -S -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -U -S -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -z --l2
#python main_gFun.py $dataset -o $logfile -P -U -r -z --l2
#python main_gFun.py $dataset -o $logfile -P -S -r -z --l2
#python main_gFun.py $dataset -o $logfile -U -S -r -z --l2
#python main_gFun.py $dataset -o $logfile -P -U -S -r -z --l2
#
##FeatureSetToPosteriors (aggregation mean)
python main_multimodal_cls.py $dataset -o $logfile -P -U -r -a -z --l2 --allprob
@ -19,10 +19,10 @@ python main_multimodal_cls.py $dataset -o $logfile -U -S -r -a -z --l2 --allprob
python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -a -z --l2 --allprob
##FeatureSetToPosteriors
#python main_multimodal_cls.py $dataset -o $logfile -P -U -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -S -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -U -S -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -U -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -S -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -U -S -r -z --l2 --allprob
#python main_gFun.py $dataset -o $logfile -P -U -S -r -z --l2 --allprob
#MajorityVoting
#python main_majorityvoting_cls.py $dataset -o $logfile -P -U -r

View File

@ -235,7 +235,7 @@ class MultilingualIndex:
def bert_embeddings(self, bert_path, max_len=512, batch_size=64, stored_embeddings=False):
show_gpu('GPU memory before initializing mBert model:')
# TODO: load dumped embeddings?
from main_mbert_extractor import do_tokenization, ExtractorDataset, DataLoader
from experiment_scripts.main_mbert_extractor import do_tokenization, ExtractorDataset, DataLoader
from transformers import BertConfig, BertForSequenceClassification
print('[mBERT] generating mBERT doc embeddings')