moved .sh files

This commit is contained in:
andrea 2020-10-22 15:33:54 +02:00
parent 90f24dab8e
commit 526cf80b66
17 changed files with 34 additions and 38 deletions

View File

@ -5,12 +5,12 @@ runs='6 7 8 9' #0 1 2 3 4 5
for run in $runs for run in $runs
do do
dataset=$dataset_path$run.pickle dataset=$dataset_path$run.pickle
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 Pr(views) concatenated (done up to run5) #python main_gFun.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 Pr(views) concatenated (done up to run5)
python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 views concatenated python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 views concatenated
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -a -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -U -S -c -r -a -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -c -r -a -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -U -c -r -a -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -S -c -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -S -c -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -c -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -U -c -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -c -P -U -r -z --l2 #python main_gFun.py $dataset -o $logfile -c -P -U -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -c -P -U -S -r -z --l2 #python main_gFun.py $dataset -o $logfile -c -P -U -S -r -z --l2
done done

View File

@ -5,12 +5,12 @@ runs='0 1 2 3 4 5 6 7 8 9'
for run in $runs for run in $runs
do do
dataset=$dataset_path$run.pickle dataset=$dataset_path$run.pickle
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 Pr(views) concatenated #python main_gFun.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 Pr(views) concatenated
python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 views concatenated python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -z --l2 --allprob # last combination for CIKM 3 views concatenated
#python main_multimodal_cls.py $dataset -o $logfile -P -U -c -r -a -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -U -c -r -a -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -c -r -a -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -U -S -c -r -a -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -S -c -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -S -c -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -c -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -U -c -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -c -P -U -r -z --l2 #python main_gFun.py $dataset -o $logfile -c -P -U -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -c -P -U -S -r -z --l2 #python main_gFun.py $dataset -o $logfile -c -P -U -S -r -z --l2
done done

View File

@ -1,6 +1,6 @@
import argparse import argparse
import torch.nn as nn import torch.nn as nn
from torch.optim.lr_scheduler import StepLR, MultiStepLR from torch.optim.lr_scheduler import StepLR
from dataset_builder import MultilingualDataset from dataset_builder import MultilingualDataset
from learning.transformers import load_muse_embeddings from learning.transformers import load_muse_embeddings
from models.lstm_class import RNNMultilingualClassifier from models.lstm_class import RNNMultilingualClassifier

View File

@ -1,6 +1,5 @@
import os import os
from dataset_builder import MultilingualDataset from dataset_builder import MultilingualDataset
from learning.learners import *
from util.evaluation import * from util.evaluation import *
from optparse import OptionParser from optparse import OptionParser
from util.file import exists from util.file import exists

View File

@ -2,15 +2,12 @@ import os
from dataset_builder import MultilingualDataset from dataset_builder import MultilingualDataset
# from learning.learners import * # from learning.learners import *
# from learning.learners import FunnellingMultimodal # from learning.learners import FunnellingMultimodal
from learning.transformers import Funnelling, PosteriorProbabilitiesEmbedder, MetaClassifier, \ from learning.transformers import PosteriorProbabilitiesEmbedder, TfidfVectorizerMultilingual, WordClassEmbedder, MuseEmbedder, FeatureSet2Posteriors, Voting
TfidfVectorizerMultilingual, DocEmbedderList, WordClassEmbedder, MuseEmbedder, FeatureSet2Posteriors, Voting
from util.evaluation import * from util.evaluation import *
from optparse import OptionParser from optparse import OptionParser
from util.file import exists from util.file import exists
from util.results import PolylingualClassificationResults from util.results import PolylingualClassificationResults
from sklearn.svm import SVC from sklearn.svm import SVC
from util.util import get_learner, get_params
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
parser = OptionParser() parser = OptionParser()

View File

@ -1,4 +1,4 @@
from main_mbert import * from experiment_scripts.main_mbert import *
import pickle import pickle

View File

@ -7,10 +7,10 @@ logfile=./results/final_combinations_jrc.csv
# (no one seems to improve over standard funnelling [the improved version after A.1] with posteriors probabilities...) # (no one seems to improve over standard funnelling [the improved version after A.1] with posteriors probabilities...)
# aggregation=concatenation # aggregation=concatenation
#python main_multimodal_cls.py $dataset -o $logfile -P -U -r -z --l2 #python main_gFun.py $dataset -o $logfile -P -U -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -P -S -r -z --l2 #python main_gFun.py $dataset -o $logfile -P -S -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -U -S -r -z --l2 #python main_gFun.py $dataset -o $logfile -U -S -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -z --l2 #python main_gFun.py $dataset -o $logfile -P -U -S -r -z --l2
# #
##FeatureSetToPosteriors (aggregation mean) ##FeatureSetToPosteriors (aggregation mean)
@ -20,10 +20,10 @@ python main_multimodal_cls.py $dataset -o $logfile -U -S -r -a -z --l2 --allprob
python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -a -z --l2 --allprob python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -a -z --l2 --allprob
##FeatureSetToPosteriors ##FeatureSetToPosteriors
#python main_multimodal_cls.py $dataset -o $logfile -P -U -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -U -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -S -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -S -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -U -S -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -U -S -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -U -S -r -z --l2 --allprob
#MajorityVoting #MajorityVoting
#python main_majorityvoting_cls.py $dataset -o $logfile -P -U -r #python main_majorityvoting_cls.py $dataset -o $logfile -P -U -r

View File

@ -7,10 +7,10 @@ logfile=./results/final_combinations_rcv.csv
# (no one seems to improve over standard funnelling [the improved version after A.1] with posteriors probabilities...) # (no one seems to improve over standard funnelling [the improved version after A.1] with posteriors probabilities...)
# aggregation=concatenation # aggregation=concatenation
#python main_multimodal_cls.py $dataset -o $logfile -P -U -r -z --l2 #python main_gFun.py $dataset -o $logfile -P -U -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -P -S -r -z --l2 #python main_gFun.py $dataset -o $logfile -P -S -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -U -S -r -z --l2 #python main_gFun.py $dataset -o $logfile -U -S -r -z --l2
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -z --l2 #python main_gFun.py $dataset -o $logfile -P -U -S -r -z --l2
# #
##FeatureSetToPosteriors (aggregation mean) ##FeatureSetToPosteriors (aggregation mean)
python main_multimodal_cls.py $dataset -o $logfile -P -U -r -a -z --l2 --allprob python main_multimodal_cls.py $dataset -o $logfile -P -U -r -a -z --l2 --allprob
@ -19,10 +19,10 @@ python main_multimodal_cls.py $dataset -o $logfile -U -S -r -a -z --l2 --allprob
python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -a -z --l2 --allprob python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -a -z --l2 --allprob
##FeatureSetToPosteriors ##FeatureSetToPosteriors
#python main_multimodal_cls.py $dataset -o $logfile -P -U -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -U -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -S -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -S -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -U -S -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -U -S -r -z --l2 --allprob
#python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -U -S -r -z --l2 --allprob
#MajorityVoting #MajorityVoting
#python main_majorityvoting_cls.py $dataset -o $logfile -P -U -r #python main_majorityvoting_cls.py $dataset -o $logfile -P -U -r

View File

@ -235,7 +235,7 @@ class MultilingualIndex:
def bert_embeddings(self, bert_path, max_len=512, batch_size=64, stored_embeddings=False): def bert_embeddings(self, bert_path, max_len=512, batch_size=64, stored_embeddings=False):
show_gpu('GPU memory before initializing mBert model:') show_gpu('GPU memory before initializing mBert model:')
# TODO: load dumped embeddings? # TODO: load dumped embeddings?
from main_mbert_extractor import do_tokenization, ExtractorDataset, DataLoader from experiment_scripts.main_mbert_extractor import do_tokenization, ExtractorDataset, DataLoader
from transformers import BertConfig, BertForSequenceClassification from transformers import BertConfig, BertForSequenceClassification
print('[mBERT] generating mBERT doc embeddings') print('[mBERT] generating mBERT doc embeddings')