diff --git a/src/learning/transformers.py b/src/learning/transformers.py index f99c23b..e6c5194 100644 --- a/src/learning/transformers.py +++ b/src/learning/transformers.py @@ -328,7 +328,7 @@ class RecurrentEmbedder: self.posteriorEmbedder = MetaClassifier( SVC(kernel='rbf', gamma='auto', probability=True, cache_size=1000, random_state=1), n_jobs=options.n_jobs) - def fit(self, lX, ly, lV=None, batch_size=64, nepochs=2, val_epochs=1): + def fit(self, lX, ly, lV=None, batch_size=64, nepochs=200, val_epochs=1): print('### Gated Recurrent Unit View Generator (G)') # could be better to init model here at first .fit() call! if self.model is None: @@ -412,14 +412,19 @@ class RecurrentEmbedder: batcher_transform = BatchGRU(batch_size, batches_per_epoch=batch_size, languages=self.langs, lpad=self.multilingual_index.l_pad()) - l_devel_index = self.multilingual_index.l_devel_index() - l_devel_target = self.multilingual_index.l_devel_target() - # l_devel_target = {k: v[:len(data[lang])] for k, v in l_devel_target.items()} + # l_devel_index = self.multilingual_index.l_devel_index() + l_devel_target = self.multilingual_index.l_devel_target() + l_devel_target = {k: v[:len(data[k])] for k, v in l_devel_target.items()} # todo -> debug + for batch, _, target, lang, in batchify(l_index=data, + l_post=None, + llabels=l_devel_target, + batchsize=batch_size, + lpad=self.multilingual_index.l_pad()): # for idx, (batch, post, bert_emb, target, lang) in enumerate( # batcher_transform.batchify(l_devel_index, None, None, l_devel_target)): - for idx, (batch, post, bert_emb, target, lang) in enumerate( - batcher_transform.batchify(data, None, None, l_devel_target)): + # for idx, (batch, post, bert_emb, target, lang) in enumerate( + # batcher_transform.batchify(data, None, None, l_devel_target)): if lang not in lX.keys(): lX[lang] = self.model.get_embeddings(batch, lang) ly[lang] = target.cpu().detach().numpy()