setting up zero-shot experiments (done and tested for WordClassGen)
This commit is contained in:
parent
7f493da0f8
commit
5821325c86
5
main.py
5
main.py
|
@ -41,7 +41,8 @@ def main(args):
|
|||
embedder_list.append(museEmbedder)
|
||||
|
||||
if args.wce_embedder:
|
||||
wceEmbedder = WordClassGen(n_jobs=args.n_jobs)
|
||||
wceEmbedder = WordClassGen(n_jobs=args.n_jobs,
|
||||
zero_shot=zero_shot, train_langs=zscl_train_langs) # Todo: testing zero shot
|
||||
embedder_list.append(wceEmbedder)
|
||||
|
||||
if args.gru_embedder:
|
||||
|
@ -74,7 +75,7 @@ def main(args):
|
|||
# Testing ----------------------------------------
|
||||
print('\n[Testing Generalized Funnelling]')
|
||||
time_te = time.time()
|
||||
# Zero shot scenario -> setting first tier learners zero_shot param to False
|
||||
# TODO: Zero shot scenario -> setting first tier learners zero_shot param to False
|
||||
gfun.set_zero_shot(val=False)
|
||||
ly_ = gfun.predict(lXte)
|
||||
l_eval = evaluate(ly_true=lyte, ly_pred=ly_)
|
||||
|
|
|
@ -181,7 +181,7 @@ class WordClassGen(ViewGen):
|
|||
View Generator (w): generates document representation via Word-Class-Embeddings.
|
||||
Document embeddings are obtained via weighted sum of document's constituent embeddings.
|
||||
"""
|
||||
def __init__(self, n_jobs=-1):
|
||||
def __init__(self, zero_shot=False, train_langs: list = None, n_jobs=-1):
|
||||
"""
|
||||
Init WordClassGen.
|
||||
:param n_jobs: int, number of concurrent workers
|
||||
|
@ -191,6 +191,11 @@ class WordClassGen(ViewGen):
|
|||
self.langs = None
|
||||
self.lWce = None
|
||||
self.vectorizer = TfidfVectorizerMultilingual(sublinear_tf=True, use_idf=True)
|
||||
# Zero shot parameters
|
||||
self.zero_shot = zero_shot
|
||||
if train_langs is None:
|
||||
train_langs = ['it']
|
||||
self.train_langs = train_langs
|
||||
|
||||
def fit(self, lX, ly):
|
||||
"""
|
||||
|
@ -215,19 +220,34 @@ class WordClassGen(ViewGen):
|
|||
:param lX: dict {lang: indexed documents}
|
||||
:return: document projection to the common latent space.
|
||||
"""
|
||||
lX = self.vectorizer.transform(lX)
|
||||
# Testing zero-shot experiments
|
||||
if self.zero_shot:
|
||||
lX = self.zero_shot_experiments(lX)
|
||||
lX = {l: self.vectorizer.vectorizer[l].transform(lX[l]) for l in self.langs if lX[l] is not None}
|
||||
else:
|
||||
lX = self.vectorizer.transform(lX)
|
||||
XdotWce = Parallel(n_jobs=self.n_jobs)(
|
||||
delayed(XdotM)(lX[lang], self.lWce[lang], sif=True) for lang in self.langs)
|
||||
lWce = {l: XdotWce[i] for i, l in enumerate(self.langs)}
|
||||
delayed(XdotM)(lX[lang], self.lWce[lang], sif=True) for lang in sorted(lX.keys()))
|
||||
lWce = {l: XdotWce[i] for i, l in enumerate(sorted(lX.keys()))}
|
||||
lWce = _normalize(lWce, l2=True)
|
||||
return lWce
|
||||
|
||||
def fit_transform(self, lX, ly):
|
||||
return self.fit(lX, ly).transform(lX)
|
||||
|
||||
def zero_shot_experiments(self, lX):
|
||||
print(f'# Zero-shot setting! Training langs will be set to: {sorted(self.train_langs)}')
|
||||
_lX = {}
|
||||
for lang in self.langs:
|
||||
if lang in self.train_langs:
|
||||
_lX[lang] = lX[lang]
|
||||
else:
|
||||
_lX[lang] = None
|
||||
lX = _lX
|
||||
return lX
|
||||
|
||||
def set_zero_shot(self, val: bool):
|
||||
self.zero_shot = val
|
||||
print('# TODO: WordClassGen has not been configured for zero-shot experiments')
|
||||
return
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue