Implemented micro and macro K in pl (cpu and gpu)
This commit is contained in:
parent
6ed7712979
commit
5ce1203942
|
|
@ -28,9 +28,9 @@ def main(args):
|
|||
# gFun = VanillaFunGen(base_learner=get_learner(calibrate=True), n_jobs=N_JOBS)
|
||||
# gFun = MuseGen(muse_dir='/home/andreapdr/funneling_pdr/embeddings', n_jobs=N_JOBS)
|
||||
# gFun = WordClassGen(n_jobs=N_JOBS)
|
||||
# gFun = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=True, batch_size=128,
|
||||
# nepochs=100, gpus=args.gpus, n_jobs=N_JOBS)
|
||||
gFun = BertGen(multilingualIndex, batch_size=4, nepochs=10, gpus=args.gpus, n_jobs=N_JOBS)
|
||||
gFun = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=True, batch_size=128,
|
||||
nepochs=100, gpus=args.gpus, n_jobs=N_JOBS)
|
||||
# gFun = BertGen(multilingualIndex, batch_size=4, nepochs=10, gpus=args.gpus, n_jobs=N_JOBS)
|
||||
|
||||
gFun.fit(lX, ly)
|
||||
|
||||
|
|
|
|||
|
|
@ -6,9 +6,9 @@ from torch.autograd import Variable
|
|||
from torch.optim.lr_scheduler import StepLR
|
||||
from transformers import AdamW
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning.metrics import F1, Accuracy
|
||||
from pytorch_lightning.metrics import Accuracy
|
||||
from models.helpers import init_embeddings
|
||||
from util.pl_metrics import CustomF1
|
||||
from util.pl_metrics import CustomF1, CustomK
|
||||
from util.evaluation import evaluate
|
||||
|
||||
# TODO: it should also be possible to compute metrics independently for each language!
|
||||
|
|
@ -33,12 +33,10 @@ class RecurrentModel(pl.LightningModule):
|
|||
self.loss = torch.nn.BCEWithLogitsLoss()
|
||||
|
||||
self.accuracy = Accuracy()
|
||||
self.microF1_tr = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
|
||||
self.macroF1_tr = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
|
||||
self.microF1_va = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
|
||||
self.macroF1_va = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
|
||||
self.microF1_te = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
|
||||
self.macroF1_te = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
|
||||
self.microF1 = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
|
||||
self.macroF1 = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
|
||||
self.microK = CustomK(num_classes=output_size, average='micro', device=self.gpus)
|
||||
self.macroK = CustomK(num_classes=output_size, average='macro', device=self.gpus)
|
||||
|
||||
self.lPretrained_embeddings = nn.ModuleDict()
|
||||
self.lLearnable_embeddings = nn.ModuleDict()
|
||||
|
|
@ -110,12 +108,16 @@ class RecurrentModel(pl.LightningModule):
|
|||
# Squashing logits through Sigmoid in order to get confidence score
|
||||
predictions = torch.sigmoid(logits) > 0.5
|
||||
accuracy = self.accuracy(predictions, ly)
|
||||
microF1 = self.microF1_tr(predictions, ly)
|
||||
macroF1 = self.macroF1_tr(predictions, ly)
|
||||
microF1 = self.microF1(predictions, ly)
|
||||
macroF1 = self.macroF1(predictions, ly)
|
||||
microK = self.microK(predictions, ly)
|
||||
macroK = self.macroK(predictions, ly)
|
||||
self.log('train-loss', loss, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-accuracy', accuracy, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-macroF1', macroF1, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-microF1', microF1, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-macroK', macroK, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-microK', microK, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
return {'loss': loss}
|
||||
|
||||
def validation_step(self, val_batch, batch_idx):
|
||||
|
|
@ -128,12 +130,16 @@ class RecurrentModel(pl.LightningModule):
|
|||
loss = self.loss(logits, ly)
|
||||
predictions = torch.sigmoid(logits) > 0.5
|
||||
accuracy = self.accuracy(predictions, ly)
|
||||
microF1 = self.microF1_va(predictions, ly)
|
||||
macroF1 = self.macroF1_va(predictions, ly)
|
||||
self.log('val-loss', loss, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('val-accuracy', accuracy, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
microF1 = self.microF1(predictions, ly)
|
||||
macroF1 = self.macroF1(predictions, ly)
|
||||
microK = self.microK(predictions, ly)
|
||||
macroK = self.macroK(predictions, ly)
|
||||
self.log('val-loss', loss, on_step=False, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('val-accuracy', accuracy, on_step=False, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('val-macroF1', macroF1, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
self.log('val-microF1', microF1, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
self.log('val-macroK', macroK, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
self.log('val-microK', microK, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
return {'loss': loss}
|
||||
|
||||
def test_step(self, test_batch, batch_idx):
|
||||
|
|
@ -145,8 +151,8 @@ class RecurrentModel(pl.LightningModule):
|
|||
ly = torch.cat(_ly, dim=0)
|
||||
predictions = torch.sigmoid(logits) > 0.5
|
||||
accuracy = self.accuracy(predictions, ly)
|
||||
microF1 = self.microF1_te(predictions, ly)
|
||||
macroF1 = self.macroF1_te(predictions, ly)
|
||||
microF1 = self.microF1(predictions, ly)
|
||||
macroF1 = self.macroF1(predictions, ly)
|
||||
self.log('test-accuracy', accuracy, on_step=False, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('test-macroF1', macroF1, on_step=False, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('test-microF1', microF1, on_step=False, on_epoch=True, prog_bar=False, logger=True)
|
||||
|
|
|
|||
|
|
@ -3,6 +3,21 @@ from pytorch_lightning.metrics import Metric
|
|||
from util.common import is_false, is_true
|
||||
|
||||
|
||||
def _update(pred, target, device):
|
||||
assert pred.shape == target.shape
|
||||
# preparing preds and targets for count
|
||||
true_pred = is_true(pred, device)
|
||||
false_pred = is_false(pred, device)
|
||||
true_target = is_true(target, device)
|
||||
false_target = is_false(target, device)
|
||||
|
||||
tp = torch.sum(true_pred * true_target, dim=0)
|
||||
tn = torch.sum(false_pred * false_target, dim=0)
|
||||
fp = torch.sum(true_pred * false_target, dim=0)
|
||||
fn = torch.sum(false_pred * target, dim=0)
|
||||
return tp, tn, fp, fn
|
||||
|
||||
|
||||
class CustomF1(Metric):
|
||||
def __init__(self, num_classes, device, average='micro'):
|
||||
"""
|
||||
|
|
@ -26,27 +41,13 @@ class CustomF1(Metric):
|
|||
self.add_state('false_negative', default=torch.zeros(self.num_classes))
|
||||
|
||||
def update(self, preds, target):
|
||||
true_positive, true_negative, false_positive, false_negative = self._update(preds, target)
|
||||
true_positive, true_negative, false_positive, false_negative = _update(preds, target, self.device)
|
||||
|
||||
self.true_positive += true_positive
|
||||
self.true_negative += true_negative
|
||||
self.false_positive += false_positive
|
||||
self.false_negative += false_negative
|
||||
|
||||
def _update(self, pred, target):
|
||||
assert pred.shape == target.shape
|
||||
# preparing preds and targets for count
|
||||
true_pred = is_true(pred, self.device)
|
||||
false_pred = is_false(pred, self.device)
|
||||
true_target = is_true(target, self.device)
|
||||
false_target = is_false(target, self.device)
|
||||
|
||||
tp = torch.sum(true_pred * true_target, dim=0)
|
||||
tn = torch.sum(false_pred * false_target, dim=0)
|
||||
fp = torch.sum(true_pred * false_target, dim=0)
|
||||
fn = torch.sum(false_pred * target, dim=0)
|
||||
return tp, tn, fp, fn
|
||||
|
||||
def compute(self):
|
||||
if self.average == 'micro':
|
||||
num = 2.0 * self.true_positive.sum()
|
||||
|
|
@ -69,3 +70,71 @@ class CustomF1(Metric):
|
|||
class_specific.append(1.)
|
||||
average = torch.sum(torch.Tensor(class_specific))/self.num_classes
|
||||
return average.to(self.device)
|
||||
|
||||
|
||||
class CustomK(Metric):
|
||||
def __init__(self, num_classes, device, average='micro'):
|
||||
"""
|
||||
K metric. https://dl.acm.org/doi/10.1145/2808194.2809449
|
||||
:param num_classes:
|
||||
:param device:
|
||||
:param average:
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_classes = num_classes
|
||||
self.average = average
|
||||
self.device = 'cuda' if device else 'cpu'
|
||||
self.add_state('true_positive', default=torch.zeros(self.num_classes))
|
||||
self.add_state('true_negative', default=torch.zeros(self.num_classes))
|
||||
self.add_state('false_positive', default=torch.zeros(self.num_classes))
|
||||
self.add_state('false_negative', default=torch.zeros(self.num_classes))
|
||||
|
||||
def update(self, preds, target):
|
||||
true_positive, true_negative, false_positive, false_negative = _update(preds, target, self.device)
|
||||
|
||||
self.true_positive += true_positive
|
||||
self.true_negative += true_negative
|
||||
self.false_positive += false_positive
|
||||
self.false_negative += false_negative
|
||||
|
||||
def compute(self):
|
||||
if self.average == 'micro':
|
||||
specificity, recall = 0., 0.
|
||||
absolute_negatives = self.true_negative.sum() + self.false_positive.sum()
|
||||
if absolute_negatives != 0:
|
||||
specificity = self.true_negative.sum()/absolute_negatives # Todo check if it is float
|
||||
absolute_positives = self.true_positive.sum() + self.false_negative.sum()
|
||||
if absolute_positives != 0:
|
||||
recall = self.true_positive.sum()/absolute_positives # Todo check if it is float
|
||||
|
||||
if absolute_positives == 0:
|
||||
return 2. * specificity - 1
|
||||
elif absolute_negatives == 0:
|
||||
return 2. * recall - 1
|
||||
else:
|
||||
return specificity + recall - 1
|
||||
|
||||
if self.average == 'macro':
|
||||
class_specific = []
|
||||
for i in range(self.num_classes):
|
||||
class_tp = self.true_positive[i]
|
||||
class_tn = self.true_negative[i]
|
||||
class_fp = self.false_positive[i]
|
||||
class_fn = self.false_negative[i]
|
||||
|
||||
specificity, recall = 0., 0.
|
||||
absolute_negatives = class_tn + class_fp
|
||||
if absolute_negatives != 0:
|
||||
specificity = class_tn / absolute_negatives # Todo check if it is float
|
||||
absolute_positives = class_tp + class_fn
|
||||
if absolute_positives != 0:
|
||||
recall = class_tp / absolute_positives # Todo check if it is float
|
||||
|
||||
if absolute_positives == 0:
|
||||
class_specific.append(2. * specificity - 1)
|
||||
elif absolute_negatives == 0:
|
||||
class_specific.append(2. * recall - 1)
|
||||
else:
|
||||
class_specific.append(specificity + recall - 1)
|
||||
average = torch.sum(torch.Tensor(class_specific)) / self.num_classes
|
||||
return average.to(self.device)
|
||||
|
|
|
|||
Loading…
Reference in New Issue