Implemented inference functions for bert (cpu and gpu)

This commit is contained in:
andrea 2021-01-25 12:28:58 +01:00
parent 01bd85d156
commit 6e0b66e13e
6 changed files with 135 additions and 60 deletions

View File

@ -105,16 +105,16 @@ class RecurrentDataModule(pl.LightningDataModule):
if stage == 'fit' or stage is None:
l_train_index, l_train_target = self.multilingualIndex.l_train()
# Debug settings: reducing number of samples
# l_train_index = {l: train[:50] for l, train in l_train_index.items()}
# l_train_target = {l: target[:50] for l, target in l_train_target.items()}
l_train_index = {l: train[:50] for l, train in l_train_index.items()}
l_train_target = {l: target[:50] for l, target in l_train_target.items()}
self.training_dataset = RecurrentDataset(l_train_index, l_train_target,
lPad_index=self.multilingualIndex.l_pad())
l_val_index, l_val_target = self.multilingualIndex.l_val()
# Debug settings: reducing number of samples
# l_val_index = {l: train[:50] for l, train in l_val_index.items()}
# l_val_target = {l: target[:50] for l, target in l_val_target.items()}
l_val_index = {l: train[:50] for l, train in l_val_index.items()}
l_val_target = {l: target[:50] for l, target in l_val_target.items()}
self.val_dataset = RecurrentDataset(l_val_index, l_val_target,
lPad_index=self.multilingualIndex.l_pad())
@ -163,7 +163,7 @@ class BertDataModule(RecurrentDataModule):
if stage == 'test' or stage is None:
l_test_raw, l_test_target = self.multilingualIndex.l_test_raw()
l_test_index = self.tokenize(l_val_raw, max_len=self.max_len)
l_test_index = self.tokenize(l_test_raw, max_len=self.max_len)
self.test_dataset = RecurrentDataset(l_test_index, l_test_target,
lPad_index=self.multilingualIndex.l_pad())

View File

@ -28,15 +28,16 @@ def main(args):
# gFun = VanillaFunGen(base_learner=get_learner(calibrate=True), n_jobs=N_JOBS)
# gFun = MuseGen(muse_dir='/home/andreapdr/funneling_pdr/embeddings', n_jobs=N_JOBS)
# gFun = WordClassGen(n_jobs=N_JOBS)
gFun = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=False, batch_size=256,
nepochs=50, gpus=args.gpus, n_jobs=N_JOBS)
# gFun = BertGen(multilingualIndex, batch_size=4, nepochs=10, gpus=args.gpus, n_jobs=N_JOBS)
# gFun = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=False, batch_size=256,
# nepochs=50, gpus=args.gpus, n_jobs=N_JOBS)
gFun = BertGen(multilingualIndex, batch_size=4, nepochs=1, gpus=args.gpus, n_jobs=N_JOBS)
time_init = time()
# gFun.fit(lX, ly)
gFun.fit(lX, ly)
# print('Projecting...')
# y_ = gFun.transform(lX)
print('Projecting...')
y_ = gFun.transform(lX)
train_time = round(time() - time_init, 3)
exit(f'Executed! Training time: {train_time}!')

View File

@ -2,23 +2,31 @@ import torch
import pytorch_lightning as pl
from torch.optim.lr_scheduler import StepLR
from transformers import BertForSequenceClassification, AdamW
from pytorch_lightning.metrics import Accuracy
from util.pl_metrics import CustomF1
from util.pl_metrics import CustomF1, CustomK
class BertModel(pl.LightningModule):
def __init__(self, output_size, stored_path, gpus=None):
"""
Init Bert model.
:param output_size:
:param stored_path:
:param gpus:
"""
super().__init__()
self.loss = torch.nn.BCEWithLogitsLoss()
self.gpus = gpus
self.accuracy = Accuracy()
self.microF1_tr = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
self.macroF1_tr = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
self.microF1_va = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
self.macroF1_va = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
self.microF1_te = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
self.macroF1_te = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
self.microF1 = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
self.macroF1 = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
self.microK = CustomK(num_classes=output_size, average='micro', device=self.gpus)
self.macroK = CustomK(num_classes=output_size, average='macro', device=self.gpus)
# Language specific metrics - I am not really sure if they should be initialized
# independently or we can use the metrics init above... # TODO: check it
self.lang_macroF1 = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
self.lang_microF1 = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
self.lang_macroK = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
self.lang_microK = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
if stored_path:
self.bert = BertForSequenceClassification.from_pretrained(stored_path,
@ -37,51 +45,111 @@ class BertModel(pl.LightningModule):
def training_step(self, train_batch, batch_idx):
X, y, _, batch_langs = train_batch
X = torch.cat(X).view([X[0].shape[0], len(X)])
y = y.type(torch.cuda.FloatTensor)
# y = y.type(torch.cuda.FloatTensor)
y = y.type(torch.FloatTensor)
y.to('cuda' if self.gpus else 'cpu')
logits, _ = self.forward(X)
loss = self.loss(logits, y)
# Squashing logits through Sigmoid in order to get confidence score
predictions = torch.sigmoid(logits) > 0.5
accuracy = self.accuracy(predictions, y)
microF1 = self.microF1_tr(predictions, y)
macroF1 = self.macroF1_tr(predictions, y)
self.log('train-loss', loss, on_step=True, on_epoch=True, prog_bar=False, logger=True)
self.log('train-accuracy', accuracy, on_step=True, on_epoch=True, prog_bar=False, logger=True)
self.log('train-macroF1', macroF1, on_step=True, on_epoch=True, prog_bar=False, logger=True)
self.log('train-microF1', microF1, on_step=True, on_epoch=True, prog_bar=False, logger=True)
return {'loss': loss}
microF1 = self.microF1(predictions, y)
macroF1 = self.macroF1(predictions, y)
microK = self.microK(predictions, y)
macroK = self.macroK(predictions, y)
self.log('train-loss', loss, on_step=True, on_epoch=True, prog_bar=False, logger=True)
self.log('train-macroF1', macroF1, on_step=True, on_epoch=True, prog_bar=False, logger=True)
self.log('train-microF1', microF1, on_step=True, on_epoch=True, prog_bar=False, logger=True)
self.log('train-macroK', macroK, on_step=True, on_epoch=True, prog_bar=False, logger=True)
self.log('train-microK', microK, on_step=True, on_epoch=True, prog_bar=False, logger=True)
lX, ly = self._reconstruct_dict(predictions, y, batch_langs)
return {'loss': loss, 'pred': lX, 'target': ly}
def _reconstruct_dict(self, predictions, y, batch_langs):
reconstructed_x = {lang: [] for lang in set(batch_langs)}
reconstructed_y = {lang: [] for lang in set(batch_langs)}
for i, pred in enumerate(predictions):
reconstructed_x[batch_langs[i]].append(pred)
reconstructed_y[batch_langs[i]].append(y[i])
for k, v in reconstructed_x.items():
reconstructed_x[k] = torch.cat(v).view(-1, predictions.shape[1])
for k, v in reconstructed_y.items():
reconstructed_y[k] = torch.cat(v).view(-1, predictions.shape[1])
return reconstructed_x, reconstructed_y
def training_epoch_end(self, outputs):
langs = []
for output in outputs:
langs.extend(list(output['pred'].keys()))
langs = set(langs)
# outputs is a of n dicts of m elements, where n is equal to the number of epoch steps and m is batchsize.
# here we save epoch level metric values and compute them specifically for each language
# TODO: this is horrible...
res_macroF1 = {lang: [] for lang in langs}
res_microF1 = {lang: [] for lang in langs}
res_macroK = {lang: [] for lang in langs}
res_microK = {lang: [] for lang in langs}
for output in outputs:
lX, ly = output['pred'], output['target']
for lang in lX.keys():
X, y = lX[lang], ly[lang]
lang_macroF1 = self.lang_macroF1(X, y)
lang_microF1 = self.lang_microF1(X, y)
lang_macroK = self.lang_macroK(X, y)
lang_microK = self.lang_microK(X, y)
res_macroF1[lang].append(lang_macroF1)
res_microF1[lang].append(lang_microF1)
res_macroK[lang].append(lang_macroK)
res_microK[lang].append(lang_microK)
for lang in langs:
avg_macroF1 = torch.mean(torch.Tensor(res_macroF1[lang]))
avg_microF1 = torch.mean(torch.Tensor(res_microF1[lang]))
avg_macroK = torch.mean(torch.Tensor(res_macroK[lang]))
avg_microK = torch.mean(torch.Tensor(res_microK[lang]))
self.logger.experiment.add_scalars('train-langs-macroF1', {f'{lang}': avg_macroF1}, self.current_epoch)
self.logger.experiment.add_scalars('train-langs-microF1', {f'{lang}': avg_microF1}, self.current_epoch)
self.logger.experiment.add_scalars('train-langs-macroK', {f'{lang}': avg_macroK}, self.current_epoch)
self.logger.experiment.add_scalars('train-langs-microK', {f'{lang}': avg_microK}, self.current_epoch)
def validation_step(self, val_batch, batch_idx):
X, y, _, batch_langs = val_batch
X = torch.cat(X).view([X[0].shape[0], len(X)])
y = y.type(torch.cuda.FloatTensor)
# y = y.type(torch.cuda.FloatTensor)
y = y.type(torch.FloatTensor)
y.to('cuda' if self.gpus else 'cpu')
logits, _ = self.forward(X)
loss = self.loss(logits, y)
predictions = torch.sigmoid(logits) > 0.5
accuracy = self.accuracy(predictions, y)
microF1 = self.microF1_va(predictions, y)
macroF1 = self.macroF1_va(predictions, y)
self.log('val-loss', loss, on_step=True, on_epoch=True, prog_bar=False, logger=True)
self.log('val-accuracy', accuracy, on_step=True, on_epoch=True, prog_bar=False, logger=True)
self.log('val-macroF1', macroF1, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log('val-microF1', microF1, on_step=False, on_epoch=True, prog_bar=True, logger=True)
microF1 = self.microF1(predictions, y)
macroF1 = self.macroF1(predictions, y)
microK = self.microK(predictions, y)
macroK = self.macroK(predictions, y)
self.log('val-loss', loss, on_step=False, on_epoch=True, prog_bar=False, logger=True)
self.log('val-macroF1', macroF1, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log('val-microF1', microF1, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log('val-macroK', macroK, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log('val-microK', microK, on_step=False, on_epoch=True, prog_bar=True, logger=True)
return {'loss': loss}
# def test_step(self, test_batch, batch_idx):
# lX, ly = test_batch
# logits = self.forward(lX)
# _ly = []
# for lang in sorted(lX.keys()):
# _ly.append(ly[lang])
# ly = torch.cat(_ly, dim=0)
# predictions = torch.sigmoid(logits) > 0.5
# accuracy = self.accuracy(predictions, ly)
# microF1 = self.microF1_te(predictions, ly)
# macroF1 = self.macroF1_te(predictions, ly)
# self.log('test-accuracy', accuracy, on_step=False, on_epoch=True, prog_bar=False, logger=True)
# self.log('test-macroF1', macroF1, on_step=False, on_epoch=True, prog_bar=False, logger=True)
# self.log('test-microF1', microF1, on_step=False, on_epoch=True, prog_bar=False, logger=True)
# return
def test_step(self, test_batch, batch_idx):
X, y, _, batch_langs = test_batch
X = torch.cat(X).view([X[0].shape[0], len(X)])
# y = y.type(torch.cuda.FloatTensor)
y = y.type(torch.FloatTensor)
y.to('cuda' if self.gpus else 'cpu')
logits, _ = self.forward(X)
loss = self.loss(logits, y)
# Squashing logits through Sigmoid in order to get confidence score
predictions = torch.sigmoid(logits) > 0.5
microF1 = self.microF1(predictions, y)
macroF1 = self.macroF1(predictions, y)
microK = self.microK(predictions, y)
macroK = self.macroK(predictions, y)
self.log('test-macroF1', macroF1, on_step=False, on_epoch=True, prog_bar=False, logger=True)
self.log('test-microF1', microF1, on_step=False, on_epoch=True, prog_bar=False, logger=True)
self.log('test-macroK', macroK, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log('test-microK', microK, on_step=False, on_epoch=True, prog_bar=True, logger=True)
return
def configure_optimizers(self, lr=3e-5, weight_decay=0.01):
no_decay = ['bias', 'LayerNorm.weight']

View File

@ -15,7 +15,7 @@ class RecurrentModel(pl.LightningModule):
def __init__(self, lPretrained, langs, output_size, hidden_size, lVocab_size, learnable_length,
drop_embedding_range, drop_embedding_prop, gpus=None):
"""
Init RNN model.
:param lPretrained:
:param langs:
:param output_size:

View File

@ -161,6 +161,9 @@ class MultilingualIndex:
def l_val_raw_index(self):
return {l: index.val_raw for l, index in self.l_index.items()}
def l_test_raw_index(self):
return {l: index.test_raw for l, index in self.l_index.items()}
def l_val_target(self):
return {l: index.val_target for l, index in self.l_index.items()}
@ -170,10 +173,6 @@ class MultilingualIndex:
def l_test_index(self):
return {l: index.test_index for l, index in self.l_index.items()}
def l_test_raw(self):
print('TODO: implement MultilingualIndex method to return RAW test data!')
return {l: index.test_raw for l, index in self.l_index.items()}
def l_devel_index(self):
return {l: index.devel_index for l, index in self.l_index.items()}
@ -195,6 +194,9 @@ class MultilingualIndex:
def l_val_raw(self):
return self.l_val_raw_index(), self.l_val_target()
def l_test_raw(self):
return self.l_test_raw_index(), self.l_test_target()
def get_l_pad_index(self):
return {l: index.get_pad_index() for l, index in self.l_index.items()}

View File

@ -228,7 +228,6 @@ class RecurrentGen(ViewGen):
"""
l_pad = self.multilingualIndex.l_pad()
data = self.multilingualIndex.l_devel_index()
# trainer = Trainer(gpus=self.gpus)
self.model.to('cuda' if self.gpus else 'cpu')
self.model.eval()
time_init = time()
@ -238,7 +237,7 @@ class RecurrentGen(ViewGen):
return l_embeds
def fit_transform(self, lX, ly):
pass
return self.fit(lX, ly).transform(lX)
class BertGen(ViewGen):
@ -268,7 +267,12 @@ class BertGen(ViewGen):
return self
def transform(self, lX):
# lX is raw text data. It has to be first indexed via multilingualIndex Vectorizer.
# lX is raw text data. It has to be first indexed via Bert Tokenizer.
data = 'TOKENIZE THIS'
self.model.to('cuda' if self.gpus else 'cpu')
self.model.eval()
time_init = time()
l_emebds = self.model.encode(data)
pass
def fit_transform(self, lX, ly):