Implemented inference functions for bert (cpu and gpu)
This commit is contained in:
parent
01bd85d156
commit
6e0b66e13e
|
@ -105,16 +105,16 @@ class RecurrentDataModule(pl.LightningDataModule):
|
|||
if stage == 'fit' or stage is None:
|
||||
l_train_index, l_train_target = self.multilingualIndex.l_train()
|
||||
# Debug settings: reducing number of samples
|
||||
# l_train_index = {l: train[:50] for l, train in l_train_index.items()}
|
||||
# l_train_target = {l: target[:50] for l, target in l_train_target.items()}
|
||||
l_train_index = {l: train[:50] for l, train in l_train_index.items()}
|
||||
l_train_target = {l: target[:50] for l, target in l_train_target.items()}
|
||||
|
||||
self.training_dataset = RecurrentDataset(l_train_index, l_train_target,
|
||||
lPad_index=self.multilingualIndex.l_pad())
|
||||
|
||||
l_val_index, l_val_target = self.multilingualIndex.l_val()
|
||||
# Debug settings: reducing number of samples
|
||||
# l_val_index = {l: train[:50] for l, train in l_val_index.items()}
|
||||
# l_val_target = {l: target[:50] for l, target in l_val_target.items()}
|
||||
l_val_index = {l: train[:50] for l, train in l_val_index.items()}
|
||||
l_val_target = {l: target[:50] for l, target in l_val_target.items()}
|
||||
|
||||
self.val_dataset = RecurrentDataset(l_val_index, l_val_target,
|
||||
lPad_index=self.multilingualIndex.l_pad())
|
||||
|
@ -163,7 +163,7 @@ class BertDataModule(RecurrentDataModule):
|
|||
|
||||
if stage == 'test' or stage is None:
|
||||
l_test_raw, l_test_target = self.multilingualIndex.l_test_raw()
|
||||
l_test_index = self.tokenize(l_val_raw, max_len=self.max_len)
|
||||
l_test_index = self.tokenize(l_test_raw, max_len=self.max_len)
|
||||
self.test_dataset = RecurrentDataset(l_test_index, l_test_target,
|
||||
lPad_index=self.multilingualIndex.l_pad())
|
||||
|
||||
|
|
|
@ -28,15 +28,16 @@ def main(args):
|
|||
# gFun = VanillaFunGen(base_learner=get_learner(calibrate=True), n_jobs=N_JOBS)
|
||||
# gFun = MuseGen(muse_dir='/home/andreapdr/funneling_pdr/embeddings', n_jobs=N_JOBS)
|
||||
# gFun = WordClassGen(n_jobs=N_JOBS)
|
||||
gFun = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=False, batch_size=256,
|
||||
nepochs=50, gpus=args.gpus, n_jobs=N_JOBS)
|
||||
# gFun = BertGen(multilingualIndex, batch_size=4, nepochs=10, gpus=args.gpus, n_jobs=N_JOBS)
|
||||
# gFun = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=False, batch_size=256,
|
||||
# nepochs=50, gpus=args.gpus, n_jobs=N_JOBS)
|
||||
gFun = BertGen(multilingualIndex, batch_size=4, nepochs=1, gpus=args.gpus, n_jobs=N_JOBS)
|
||||
|
||||
time_init = time()
|
||||
# gFun.fit(lX, ly)
|
||||
gFun.fit(lX, ly)
|
||||
|
||||
# print('Projecting...')
|
||||
# y_ = gFun.transform(lX)
|
||||
|
||||
print('Projecting...')
|
||||
y_ = gFun.transform(lX)
|
||||
train_time = round(time() - time_init, 3)
|
||||
exit(f'Executed! Training time: {train_time}!')
|
||||
|
||||
|
|
|
@ -2,23 +2,31 @@ import torch
|
|||
import pytorch_lightning as pl
|
||||
from torch.optim.lr_scheduler import StepLR
|
||||
from transformers import BertForSequenceClassification, AdamW
|
||||
from pytorch_lightning.metrics import Accuracy
|
||||
from util.pl_metrics import CustomF1
|
||||
from util.pl_metrics import CustomF1, CustomK
|
||||
|
||||
|
||||
class BertModel(pl.LightningModule):
|
||||
|
||||
def __init__(self, output_size, stored_path, gpus=None):
|
||||
"""
|
||||
Init Bert model.
|
||||
:param output_size:
|
||||
:param stored_path:
|
||||
:param gpus:
|
||||
"""
|
||||
super().__init__()
|
||||
self.loss = torch.nn.BCEWithLogitsLoss()
|
||||
self.gpus = gpus
|
||||
self.accuracy = Accuracy()
|
||||
self.microF1_tr = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
|
||||
self.macroF1_tr = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
|
||||
self.microF1_va = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
|
||||
self.macroF1_va = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
|
||||
self.microF1_te = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
|
||||
self.macroF1_te = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
|
||||
self.microF1 = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
|
||||
self.macroF1 = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
|
||||
self.microK = CustomK(num_classes=output_size, average='micro', device=self.gpus)
|
||||
self.macroK = CustomK(num_classes=output_size, average='macro', device=self.gpus)
|
||||
# Language specific metrics - I am not really sure if they should be initialized
|
||||
# independently or we can use the metrics init above... # TODO: check it
|
||||
self.lang_macroF1 = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
|
||||
self.lang_microF1 = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
|
||||
self.lang_macroK = CustomF1(num_classes=output_size, average='macro', device=self.gpus)
|
||||
self.lang_microK = CustomF1(num_classes=output_size, average='micro', device=self.gpus)
|
||||
|
||||
if stored_path:
|
||||
self.bert = BertForSequenceClassification.from_pretrained(stored_path,
|
||||
|
@ -37,51 +45,111 @@ class BertModel(pl.LightningModule):
|
|||
def training_step(self, train_batch, batch_idx):
|
||||
X, y, _, batch_langs = train_batch
|
||||
X = torch.cat(X).view([X[0].shape[0], len(X)])
|
||||
y = y.type(torch.cuda.FloatTensor)
|
||||
# y = y.type(torch.cuda.FloatTensor)
|
||||
y = y.type(torch.FloatTensor)
|
||||
y.to('cuda' if self.gpus else 'cpu')
|
||||
logits, _ = self.forward(X)
|
||||
loss = self.loss(logits, y)
|
||||
# Squashing logits through Sigmoid in order to get confidence score
|
||||
predictions = torch.sigmoid(logits) > 0.5
|
||||
accuracy = self.accuracy(predictions, y)
|
||||
microF1 = self.microF1_tr(predictions, y)
|
||||
macroF1 = self.macroF1_tr(predictions, y)
|
||||
self.log('train-loss', loss, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-accuracy', accuracy, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-macroF1', macroF1, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-microF1', microF1, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
return {'loss': loss}
|
||||
microF1 = self.microF1(predictions, y)
|
||||
macroF1 = self.macroF1(predictions, y)
|
||||
microK = self.microK(predictions, y)
|
||||
macroK = self.macroK(predictions, y)
|
||||
self.log('train-loss', loss, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-macroF1', macroF1, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-microF1', microF1, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-macroK', macroK, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('train-microK', microK, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
lX, ly = self._reconstruct_dict(predictions, y, batch_langs)
|
||||
return {'loss': loss, 'pred': lX, 'target': ly}
|
||||
|
||||
def _reconstruct_dict(self, predictions, y, batch_langs):
|
||||
reconstructed_x = {lang: [] for lang in set(batch_langs)}
|
||||
reconstructed_y = {lang: [] for lang in set(batch_langs)}
|
||||
for i, pred in enumerate(predictions):
|
||||
reconstructed_x[batch_langs[i]].append(pred)
|
||||
reconstructed_y[batch_langs[i]].append(y[i])
|
||||
for k, v in reconstructed_x.items():
|
||||
reconstructed_x[k] = torch.cat(v).view(-1, predictions.shape[1])
|
||||
for k, v in reconstructed_y.items():
|
||||
reconstructed_y[k] = torch.cat(v).view(-1, predictions.shape[1])
|
||||
return reconstructed_x, reconstructed_y
|
||||
|
||||
def training_epoch_end(self, outputs):
|
||||
langs = []
|
||||
for output in outputs:
|
||||
langs.extend(list(output['pred'].keys()))
|
||||
langs = set(langs)
|
||||
# outputs is a of n dicts of m elements, where n is equal to the number of epoch steps and m is batchsize.
|
||||
# here we save epoch level metric values and compute them specifically for each language
|
||||
# TODO: this is horrible...
|
||||
res_macroF1 = {lang: [] for lang in langs}
|
||||
res_microF1 = {lang: [] for lang in langs}
|
||||
res_macroK = {lang: [] for lang in langs}
|
||||
res_microK = {lang: [] for lang in langs}
|
||||
for output in outputs:
|
||||
lX, ly = output['pred'], output['target']
|
||||
for lang in lX.keys():
|
||||
X, y = lX[lang], ly[lang]
|
||||
lang_macroF1 = self.lang_macroF1(X, y)
|
||||
lang_microF1 = self.lang_microF1(X, y)
|
||||
lang_macroK = self.lang_macroK(X, y)
|
||||
lang_microK = self.lang_microK(X, y)
|
||||
|
||||
res_macroF1[lang].append(lang_macroF1)
|
||||
res_microF1[lang].append(lang_microF1)
|
||||
res_macroK[lang].append(lang_macroK)
|
||||
res_microK[lang].append(lang_microK)
|
||||
for lang in langs:
|
||||
avg_macroF1 = torch.mean(torch.Tensor(res_macroF1[lang]))
|
||||
avg_microF1 = torch.mean(torch.Tensor(res_microF1[lang]))
|
||||
avg_macroK = torch.mean(torch.Tensor(res_macroK[lang]))
|
||||
avg_microK = torch.mean(torch.Tensor(res_microK[lang]))
|
||||
self.logger.experiment.add_scalars('train-langs-macroF1', {f'{lang}': avg_macroF1}, self.current_epoch)
|
||||
self.logger.experiment.add_scalars('train-langs-microF1', {f'{lang}': avg_microF1}, self.current_epoch)
|
||||
self.logger.experiment.add_scalars('train-langs-macroK', {f'{lang}': avg_macroK}, self.current_epoch)
|
||||
self.logger.experiment.add_scalars('train-langs-microK', {f'{lang}': avg_microK}, self.current_epoch)
|
||||
|
||||
def validation_step(self, val_batch, batch_idx):
|
||||
X, y, _, batch_langs = val_batch
|
||||
X = torch.cat(X).view([X[0].shape[0], len(X)])
|
||||
y = y.type(torch.cuda.FloatTensor)
|
||||
# y = y.type(torch.cuda.FloatTensor)
|
||||
y = y.type(torch.FloatTensor)
|
||||
y.to('cuda' if self.gpus else 'cpu')
|
||||
logits, _ = self.forward(X)
|
||||
loss = self.loss(logits, y)
|
||||
predictions = torch.sigmoid(logits) > 0.5
|
||||
accuracy = self.accuracy(predictions, y)
|
||||
microF1 = self.microF1_va(predictions, y)
|
||||
macroF1 = self.macroF1_va(predictions, y)
|
||||
self.log('val-loss', loss, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('val-accuracy', accuracy, on_step=True, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('val-macroF1', macroF1, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
self.log('val-microF1', microF1, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
microF1 = self.microF1(predictions, y)
|
||||
macroF1 = self.macroF1(predictions, y)
|
||||
microK = self.microK(predictions, y)
|
||||
macroK = self.macroK(predictions, y)
|
||||
self.log('val-loss', loss, on_step=False, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('val-macroF1', macroF1, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
self.log('val-microF1', microF1, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
self.log('val-macroK', macroK, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
self.log('val-microK', microK, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
return {'loss': loss}
|
||||
|
||||
# def test_step(self, test_batch, batch_idx):
|
||||
# lX, ly = test_batch
|
||||
# logits = self.forward(lX)
|
||||
# _ly = []
|
||||
# for lang in sorted(lX.keys()):
|
||||
# _ly.append(ly[lang])
|
||||
# ly = torch.cat(_ly, dim=0)
|
||||
# predictions = torch.sigmoid(logits) > 0.5
|
||||
# accuracy = self.accuracy(predictions, ly)
|
||||
# microF1 = self.microF1_te(predictions, ly)
|
||||
# macroF1 = self.macroF1_te(predictions, ly)
|
||||
# self.log('test-accuracy', accuracy, on_step=False, on_epoch=True, prog_bar=False, logger=True)
|
||||
# self.log('test-macroF1', macroF1, on_step=False, on_epoch=True, prog_bar=False, logger=True)
|
||||
# self.log('test-microF1', microF1, on_step=False, on_epoch=True, prog_bar=False, logger=True)
|
||||
# return
|
||||
def test_step(self, test_batch, batch_idx):
|
||||
X, y, _, batch_langs = test_batch
|
||||
X = torch.cat(X).view([X[0].shape[0], len(X)])
|
||||
# y = y.type(torch.cuda.FloatTensor)
|
||||
y = y.type(torch.FloatTensor)
|
||||
y.to('cuda' if self.gpus else 'cpu')
|
||||
logits, _ = self.forward(X)
|
||||
loss = self.loss(logits, y)
|
||||
# Squashing logits through Sigmoid in order to get confidence score
|
||||
predictions = torch.sigmoid(logits) > 0.5
|
||||
microF1 = self.microF1(predictions, y)
|
||||
macroF1 = self.macroF1(predictions, y)
|
||||
microK = self.microK(predictions, y)
|
||||
macroK = self.macroK(predictions, y)
|
||||
self.log('test-macroF1', macroF1, on_step=False, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('test-microF1', microF1, on_step=False, on_epoch=True, prog_bar=False, logger=True)
|
||||
self.log('test-macroK', macroK, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
self.log('test-microK', microK, on_step=False, on_epoch=True, prog_bar=True, logger=True)
|
||||
return
|
||||
|
||||
def configure_optimizers(self, lr=3e-5, weight_decay=0.01):
|
||||
no_decay = ['bias', 'LayerNorm.weight']
|
||||
|
|
|
@ -15,7 +15,7 @@ class RecurrentModel(pl.LightningModule):
|
|||
def __init__(self, lPretrained, langs, output_size, hidden_size, lVocab_size, learnable_length,
|
||||
drop_embedding_range, drop_embedding_prop, gpus=None):
|
||||
"""
|
||||
|
||||
Init RNN model.
|
||||
:param lPretrained:
|
||||
:param langs:
|
||||
:param output_size:
|
||||
|
|
|
@ -161,6 +161,9 @@ class MultilingualIndex:
|
|||
def l_val_raw_index(self):
|
||||
return {l: index.val_raw for l, index in self.l_index.items()}
|
||||
|
||||
def l_test_raw_index(self):
|
||||
return {l: index.test_raw for l, index in self.l_index.items()}
|
||||
|
||||
def l_val_target(self):
|
||||
return {l: index.val_target for l, index in self.l_index.items()}
|
||||
|
||||
|
@ -170,10 +173,6 @@ class MultilingualIndex:
|
|||
def l_test_index(self):
|
||||
return {l: index.test_index for l, index in self.l_index.items()}
|
||||
|
||||
def l_test_raw(self):
|
||||
print('TODO: implement MultilingualIndex method to return RAW test data!')
|
||||
return {l: index.test_raw for l, index in self.l_index.items()}
|
||||
|
||||
def l_devel_index(self):
|
||||
return {l: index.devel_index for l, index in self.l_index.items()}
|
||||
|
||||
|
@ -195,6 +194,9 @@ class MultilingualIndex:
|
|||
def l_val_raw(self):
|
||||
return self.l_val_raw_index(), self.l_val_target()
|
||||
|
||||
def l_test_raw(self):
|
||||
return self.l_test_raw_index(), self.l_test_target()
|
||||
|
||||
def get_l_pad_index(self):
|
||||
return {l: index.get_pad_index() for l, index in self.l_index.items()}
|
||||
|
||||
|
|
|
@ -228,7 +228,6 @@ class RecurrentGen(ViewGen):
|
|||
"""
|
||||
l_pad = self.multilingualIndex.l_pad()
|
||||
data = self.multilingualIndex.l_devel_index()
|
||||
# trainer = Trainer(gpus=self.gpus)
|
||||
self.model.to('cuda' if self.gpus else 'cpu')
|
||||
self.model.eval()
|
||||
time_init = time()
|
||||
|
@ -238,7 +237,7 @@ class RecurrentGen(ViewGen):
|
|||
return l_embeds
|
||||
|
||||
def fit_transform(self, lX, ly):
|
||||
pass
|
||||
return self.fit(lX, ly).transform(lX)
|
||||
|
||||
|
||||
class BertGen(ViewGen):
|
||||
|
@ -268,7 +267,12 @@ class BertGen(ViewGen):
|
|||
return self
|
||||
|
||||
def transform(self, lX):
|
||||
# lX is raw text data. It has to be first indexed via multilingualIndex Vectorizer.
|
||||
# lX is raw text data. It has to be first indexed via Bert Tokenizer.
|
||||
data = 'TOKENIZE THIS'
|
||||
self.model.to('cuda' if self.gpus else 'cpu')
|
||||
self.model.eval()
|
||||
time_init = time()
|
||||
l_emebds = self.model.encode(data)
|
||||
pass
|
||||
|
||||
def fit_transform(self, lX, ly):
|
||||
|
|
Loading…
Reference in New Issue