Implemented funnelling architecture

This commit is contained in:
andrea 2021-01-25 16:38:05 +01:00
parent 0b54864514
commit 8fa8ae5989
2 changed files with 76 additions and 3 deletions

View File

@ -4,6 +4,7 @@ from view_generators import *
from data.dataset_builder import MultilingualDataset
from util.common import MultilingualIndex
from util.evaluation import evaluate
from util.results_csv import CSVlog
from time import time
@ -49,13 +50,34 @@ def main(args):
print('\n[Testing Generalized Funnelling]')
time_te = time()
ly_ = gfun.predict(lXte)
l_eval = evaluate(ly_true=ly, ly_pred=ly_)
print(l_eval)
time_te = round(time() - time_te, 3)
print(f'Testing completed in {time_te} seconds!')
# Logging ---------------------------------------
print('\n[Results]')
results = CSVlog('test_log.csv')
metrics = []
for lang in lXte.keys():
macrof1, microf1, macrok, microk = l_eval[lang]
metrics.append([macrof1, microf1, macrok, microk])
print(f'Lang {lang}: macro-F1 = {macrof1:.3f} micro-F1 = {microf1:.3f}')
results.add_row(method='gfun',
setting='TODO',
sif='TODO',
zscore='TRUE',
l2='TRUE',
dataset='TODO',
time_tr=time_tr,
time_te=time_te,
lang=lang,
macrof1=macrof1,
microf1=microf1,
macrok=macrok,
microk=microk,
notes='')
print('Averages: MF1, mF1, MK, mK', np.round(np.mean(np.array(metrics), axis=0), 3))
overall_time = round(time() - time_init, 3)
exit(f'\nExecuted in: {overall_time } seconds!')

View File

@ -0,0 +1,51 @@
import os
import pandas as pd
import numpy as np
class CSVlog:
def __init__(self, file, autoflush=True, verbose=False):
self.file = file
self.columns = ['method',
'setting',
'sif',
'zscore',
'l2',
'dataset',
'time_tr',
'time_te',
'lang',
'macrof1',
'microf1',
'macrok',
'microk',
'notes']
self.autoflush = autoflush
self.verbose = verbose
if os.path.exists(file):
self.tell('Loading existing file from {}'.format(file))
self.df = pd.read_csv(file, sep='\t')
else:
self.tell('File {} does not exist. Creating new frame.'.format(file))
dir = os.path.dirname(self.file)
if dir and not os.path.exists(dir): os.makedirs(dir)
self.df = pd.DataFrame(columns=self.columns)
def already_calculated(self, id):
return (self.df['id'] == id).any()
def add_row(self, method, setting, sif, zscore, l2, dataset, time_tr, time_te, lang,
macrof1, microf1, macrok=np.nan, microk=np.nan, notes=''):
s = pd.Series([method, setting,sif, zscore, l2, dataset, time_tr, time_te, lang,
macrof1, microf1, macrok, microk, notes],
index=self.columns)
self.df = self.df.append(s, ignore_index=True)
if self.autoflush: self.flush()
self.tell(s.to_string())
def flush(self):
self.df.to_csv(self.file, index=False, sep='\t')
def tell(self, msg):
if self.verbose:
print(msg)