Parser + fixed bert pad token id

This commit is contained in:
andrea 2021-01-26 12:40:23 +01:00
parent 108f423d41
commit 90e974f0a3
6 changed files with 124 additions and 54 deletions

View File

@ -147,7 +147,6 @@ def tokenize(l_raw, max_len):
:param max_len: :param max_len:
:return: :return:
""" """
# TODO: check BertTokenizerFast https://huggingface.co/transformers/model_doc/bert.html#berttokenizerfast
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased') tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
l_tokenized = {} l_tokenized = {}
for lang in l_raw.keys(): for lang in l_raw.keys():

View File

@ -2,60 +2,57 @@ from argparse import ArgumentParser
from funnelling import * from funnelling import *
from view_generators import * from view_generators import *
from data.dataset_builder import MultilingualDataset from data.dataset_builder import MultilingualDataset
from util.common import MultilingualIndex, get_params from util.common import MultilingualIndex, get_params, get_method_name
from util.evaluation import evaluate from util.evaluation import evaluate
from util.results_csv import CSVlog from util.results_csv import CSVlog
from time import time from time import time
def main(args): def main(args):
OPTIMC = False # TODO assert args.post_embedder or args.muse_embedder or args.wce_embedder or args.gru_embedder or args.bert_embedder, \
N_JOBS = 8 'empty set of document embeddings is not allowed!'
print('Running refactored...')
# _DATASET = '/homenfs/a.pedrotti1/datasets/CLESA/rcv2/rcv1-2_doclist_trByLang1000_teByLang1000_processed_run0.pickle' print('Running generalized funnelling...')
# EMBEDDINGS_PATH = '/homenfs/a.pedrotti1/embeddings/MUSE'
_DATASET = '/home/moreo/CLESA/rcv2/rcv1-2_doclist_trByLang1000_teByLang1000_processed_run0.pickle' data = MultilingualDataset.load(args.dataset)
EMBEDDINGS_PATH = '/home/andreapdr/gfun/embeddings'
data = MultilingualDataset.load(_DATASET)
data.set_view(languages=['it', 'fr']) data.set_view(languages=['it', 'fr'])
data.show_dimensions() data.show_dimensions()
lX, ly = data.training() lX, ly = data.training()
lXte, lyte = data.test() lXte, lyte = data.test()
# Init multilingualIndex - mandatory when deploying Neural View Generators... # Init multilingualIndex - mandatory when deploying Neural View Generators...
multilingualIndex = MultilingualIndex() if args.gru_embedder or args.bert_embedder:
lMuse = MuseLoader(langs=sorted(lX.keys()), cache=EMBEDDINGS_PATH) multilingualIndex = MultilingualIndex()
multilingualIndex.index(lX, ly, lXte, lyte, l_pretrained_vocabulary=lMuse.vocabulary()) lMuse = MuseLoader(langs=sorted(lX.keys()), cache=args.muse_dir)
multilingualIndex.index(lX, ly, lXte, lyte, l_pretrained_vocabulary=lMuse.vocabulary())
embedder_list = [] embedder_list = []
if args.X: if args.post_embedder:
posteriorEmbedder = VanillaFunGen(base_learner=get_learner(calibrate=True), n_jobs=N_JOBS) posteriorEmbedder = VanillaFunGen(base_learner=get_learner(calibrate=True), n_jobs=args.n_jobs)
embedder_list.append(posteriorEmbedder) embedder_list.append(posteriorEmbedder)
if args.M: if args.muse_embedder:
museEmbedder = MuseGen(muse_dir=EMBEDDINGS_PATH, n_jobs=N_JOBS) museEmbedder = MuseGen(muse_dir=args.muse_dir, n_jobs=args.n_jobs)
embedder_list.append(museEmbedder) embedder_list.append(museEmbedder)
if args.W: if args.wce_embedder:
wceEmbedder = WordClassGen(n_jobs=N_JOBS) wceEmbedder = WordClassGen(n_jobs=args.n_jobs)
embedder_list.append(wceEmbedder) embedder_list.append(wceEmbedder)
if args.G: if args.gru_embedder:
rnnEmbedder = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=False, batch_size=256, rnnEmbedder = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=args.gru_wce, batch_size=256,
nepochs=250, gpus=args.gpus, n_jobs=N_JOBS) nepochs=args.nepochs, gpus=args.gpus, n_jobs=args.n_jobs)
embedder_list.append(rnnEmbedder) embedder_list.append(rnnEmbedder)
if args.B: if args.bert_embedder:
bertEmbedder = BertGen(multilingualIndex, batch_size=4, nepochs=1, gpus=args.gpus, n_jobs=N_JOBS) bertEmbedder = BertGen(multilingualIndex, batch_size=4, nepochs=10, gpus=args.gpus, n_jobs=args.n_jobs)
bertEmbedder.transform(lX)
embedder_list.append(bertEmbedder) embedder_list.append(bertEmbedder)
# Init DocEmbedderList # Init DocEmbedderList (i.e., first-tier learners or view generators) and metaclassifier
docEmbedders = DocEmbedderList(embedder_list=embedder_list, probabilistic=True) docEmbedders = DocEmbedderList(embedder_list=embedder_list, probabilistic=True)
meta_parameters = None if not OPTIMC else [{'C': [1, 1e3, 1e2, 1e1, 1e-1]}]
meta = MetaClassifier(meta_learner=get_learner(calibrate=False, kernel='rbf'), meta = MetaClassifier(meta_learner=get_learner(calibrate=False, kernel='rbf'),
meta_parameters=get_params(optimc=OPTIMC)) meta_parameters=get_params(optimc=args.optimc))
# Init Funnelling Architecture # Init Funnelling Architecture
gfun = Funnelling(first_tier=docEmbedders, meta_classifier=meta) gfun = Funnelling(first_tier=docEmbedders, meta_classifier=meta)
@ -78,39 +75,93 @@ def main(args):
# Logging --------------------------------------- # Logging ---------------------------------------
print('\n[Results]') print('\n[Results]')
results = CSVlog('test_log.csv') results = CSVlog(args.csv_dir)
metrics = [] metrics = []
for lang in lXte.keys(): for lang in lXte.keys():
macrof1, microf1, macrok, microk = l_eval[lang] macrof1, microf1, macrok, microk = l_eval[lang]
metrics.append([macrof1, microf1, macrok, microk]) metrics.append([macrof1, microf1, macrok, microk])
print(f'Lang {lang}: macro-F1 = {macrof1:.3f} micro-F1 = {microf1:.3f}') print(f'Lang {lang}: macro-F1 = {macrof1:.3f} micro-F1 = {microf1:.3f}')
results.add_row(method='gfun', if results is not None:
setting='TODO', _id, _dataset = get_method_name(args)
sif='True', results.add_row(method='gfun',
zscore='True', setting=_id,
l2='True', optimc=args.optimc,
dataset='TODO', sif='True',
time_tr=time_tr, zscore='True',
time_te=time_te, l2='True',
lang=lang, dataset=_dataset,
macrof1=macrof1, time_tr=time_tr,
microf1=microf1, time_te=time_te,
macrok=macrok, lang=lang,
microk=microk, macrof1=macrof1,
notes='') microf1=microf1,
macrok=macrok,
microk=microk,
notes='')
print('Averages: MF1, mF1, MK, mK', np.round(np.mean(np.array(metrics), axis=0), 3)) print('Averages: MF1, mF1, MK, mK', np.round(np.mean(np.array(metrics), axis=0), 3))
overall_time = round(time() - time_init, 3) overall_time = round(time() - time_init, 3)
exit(f'\nExecuted in: {overall_time } seconds!') exit(f'\nExecuted in: {overall_time} seconds!')
if __name__ == '__main__': if __name__ == '__main__':
parser = ArgumentParser() parser = ArgumentParser(description='Run generalized funnelling, A. Moreo, A. Pedrotti and F. Sebastiani')
parser.add_argument('--X')
parser.add_argument('--M') parser.add_argument('dataset', help='Path to the dataset')
parser.add_argument('--W')
parser.add_argument('--G') parser.add_argument('-o', '--output', dest='csv_dir',
parser.add_argument('--B') help='Result file (default ../csv_log/gfun_results.csv)', type=str,
parser.add_argument('--gpus', default=None) default='csv_logs/gfun/gfun_results.csv')
parser.add_argument('-x', '--post_embedder', dest='post_embedder', action='store_true',
help='deploy posterior probabilities embedder to compute document embeddings',
default=False)
parser.add_argument('-w', '--wce_embedder', dest='wce_embedder', action='store_true',
help='deploy (supervised) Word-Class embedder to the compute document embeddings',
default=False)
parser.add_argument('-m', '--muse_embedder', dest='muse_embedder', action='store_true',
help='deploy (pretrained) MUSE embedder to compute document embeddings',
default=False)
parser.add_argument('-b', '--bert_embedder', dest='bert_embedder', action='store_true',
help='deploy multilingual Bert to compute document embeddings',
default=False)
parser.add_argument('-g', '--gru_embedder', dest='gru_embedder', action='store_true',
help='deploy a GRU in order to compute document embeddings',
default=False)
parser.add_argument('-c', '--c_optimize', dest='optimc', action='store_true',
help='Optimize SVMs C hyperparameter',
default=False)
parser.add_argument('-n', '--nepochs', dest='nepochs', type=str,
help='Number of max epochs to train Recurrent embedder (i.e., -g)')
parser.add_argument('-j', '--n_jobs', dest='n_jobs', type=int,
help='Number of parallel jobs (default is -1, all)',
default=-1)
parser.add_argument('--muse_dir', dest='muse_dir', type=str,
help='Path to the MUSE polylingual word embeddings (default ../embeddings)',
default='../embeddings')
parser.add_argument('--gru_wce', dest='gru_wce', action='store_true',
help='Deploy WCE embedding as embedding layer of the GRU View Generator',
default=False)
parser.add_argument('--gru_dir', dest='gru_dir', type=str,
help='Set the path to a pretrained GRU model (i.e., -g view generator)',
default=None)
parser.add_argument('--bert_dir', dest='bert_dir', type=str,
help='Set the path to a pretrained mBERT model (i.e., -b view generator)',
default=None)
parser.add_argument('--gpus', help='specifies how many GPUs to use per node',
default=None)
args = parser.parse_args() args = parser.parse_args()
main(args) main(args)

View File

@ -161,7 +161,7 @@ class BertModel(pl.LightningModule):
else: else:
batch = lX[lang][i:i + batch_size] batch = lX[lang][i:i + batch_size]
max_pad_len = define_pad_length(batch) max_pad_len = define_pad_length(batch)
batch = pad(batch, pad_index='101', max_pad_length=max_pad_len) # TODO: check pad index! batch = pad(batch, pad_index=self.bert.config.pad_token_id, max_pad_length=max_pad_len)
batch = torch.LongTensor(batch).to('cuda' if self.gpus else 'cpu') batch = torch.LongTensor(batch).to('cuda' if self.gpus else 'cpu')
_, output = self.forward(batch) _, output = self.forward(batch)
doc_embeds = output[-1][:, 0, :] doc_embeds = output[-1][:, 0, :]

View File

@ -369,3 +369,16 @@ def get_params(optimc=False):
c_range = [1e4, 1e3, 1e2, 1e1, 1, 1e-1] c_range = [1e4, 1e3, 1e2, 1e1, 1, 1e-1]
kernel = 'rbf' kernel = 'rbf'
return [{'kernel': [kernel], 'C': c_range, 'gamma':['auto']}] return [{'kernel': [kernel], 'C': c_range, 'gamma':['auto']}]
def get_method_name(args):
_id = ''
_id_conf = [args.post_embedder, args.wce_embedder, args.muse_embedder, args.bert_embedder, args.gru_embedder]
_id_name = ['X', 'W', 'M', 'B', 'G']
for i, conf in enumerate(_id_conf):
if conf:
_id += _id_name[i]
_id = _id if not args.gru_wce else _id + '_wce'
_dataset_path = args.dataset.split('/')[-1].split('_')
dataset_id = _dataset_path[0] + _dataset_path[-1]
return _id, dataset_id

View File

@ -1,6 +1,5 @@
from os import listdir, makedirs from os import listdir, makedirs
from os.path import isdir, isfile, join, exists, dirname from os.path import isdir, isfile, join, exists, dirname
#from sklearn.externals.six.moves import urllib
import urllib import urllib
from pathlib import Path from pathlib import Path
@ -14,6 +13,7 @@ def download_file(url, archive_filename):
urllib.request.urlretrieve(url, filename=archive_filename, reporthook=progress) urllib.request.urlretrieve(url, filename=archive_filename, reporthook=progress)
print("") print("")
def download_file_if_not_exists(url, archive_path): def download_file_if_not_exists(url, archive_path):
if exists(archive_path): return if exists(archive_path): return
makedirs_if_not_exist(dirname(archive_path)) makedirs_if_not_exist(dirname(archive_path))
@ -25,20 +25,26 @@ def ls(dir, typecheck):
el.sort() el.sort()
return el return el
def list_dirs(dir): def list_dirs(dir):
return ls(dir, typecheck=isdir) return ls(dir, typecheck=isdir)
def list_files(dir): def list_files(dir):
return ls(dir, typecheck=isfile) return ls(dir, typecheck=isfile)
def makedirs_if_not_exist(path): def makedirs_if_not_exist(path):
if not exists(path): makedirs(path) if not exists(path): makedirs(path)
def create_if_not_exist(path): def create_if_not_exist(path):
if not exists(path): makedirs(path) if not exists(path): makedirs(path)
def get_parent_name(path): def get_parent_name(path):
return Path(path).parent return Path(path).parent
def get_file_name(path): def get_file_name(path):
return Path(path).name return Path(path).name

View File

@ -8,6 +8,7 @@ class CSVlog:
self.file = file self.file = file
self.columns = ['method', self.columns = ['method',
'setting', 'setting',
'optimc',
'sif', 'sif',
'zscore', 'zscore',
'l2', 'l2',
@ -34,9 +35,9 @@ class CSVlog:
def already_calculated(self, id): def already_calculated(self, id):
return (self.df['id'] == id).any() return (self.df['id'] == id).any()
def add_row(self, method, setting, sif, zscore, l2, dataset, time_tr, time_te, lang, def add_row(self, method, setting, optimc, sif, zscore, l2, dataset, time_tr, time_te, lang,
macrof1, microf1, macrok=np.nan, microk=np.nan, notes=''): macrof1, microf1, macrok=np.nan, microk=np.nan, notes=''):
s = pd.Series([method, setting,sif, zscore, l2, dataset, time_tr, time_te, lang, s = pd.Series([method, setting, optimc, sif, zscore, l2, dataset, time_tr, time_te, lang,
macrof1, microf1, macrok, microk, notes], macrof1, microf1, macrok, microk, notes],
index=self.columns) index=self.columns)
self.df = self.df.append(s, ignore_index=True) self.df = self.df.append(s, ignore_index=True)