Implementing inference functions

This commit is contained in:
andrea 2021-01-22 16:54:56 +01:00
parent 4d3ef41a07
commit 9af9347531
2 changed files with 29 additions and 25 deletions

View File

@ -110,33 +110,37 @@ class RecurrentModel(pl.LightningModule):
def encode(self, lX, l_pad, batch_size=128):
"""
Returns encoded data (i.e, RNN hidden state at second feed-forward layer - linear1). Dimensionality is 512.
# TODO: does not run on gpu..
:param lX:
:param l_pad:
:param batch_size:
:return:
"""
l_embed = {lang: [] for lang in lX.keys()}
for lang in sorted(lX.keys()):
for i in range(0, len(lX[lang]), batch_size):
if i+batch_size > len(lX[lang]):
batch = lX[lang][i:len(lX[lang])]
else:
batch = lX[lang][i:i+batch_size]
max_pad_len = define_pad_length(batch)
batch = pad(batch, pad_index=l_pad[lang], max_pad_length=max_pad_len)
X = torch.LongTensor(batch)
_batch_size = X.shape[0]
X = self.embed(X, lang)
X = self.embedding_dropout(X, drop_range=self.drop_embedding_range, p_drop=self.drop_embedding_prop,
training=self.training)
X = X.permute(1, 0, 2)
h_0 = Variable(torch.zeros(self.n_layers * self.n_directions, _batch_size, self.hidden_size).to(self.device))
output, _ = self.rnn(X, h_0)
output = output[-1, :, :]
output = F.relu(self.linear0(output))
output = self.dropout(F.relu(self.linear1(output)))
l_embed[lang].append(output)
for k, v in l_embed.items():
l_embed[k] = torch.cat(v, dim=0)
return l_embed
with torch.no_grad():
l_embed = {lang: [] for lang in lX.keys()}
for lang in sorted(lX.keys()):
for i in range(0, len(lX[lang]), batch_size):
if i+batch_size > len(lX[lang]):
batch = lX[lang][i:len(lX[lang])]
else:
batch = lX[lang][i:i+batch_size]
max_pad_len = define_pad_length(batch)
batch = pad(batch, pad_index=l_pad[lang], max_pad_length=max_pad_len)
X = torch.LongTensor(batch)
_batch_size = X.shape[0]
X = self.embed(X, lang)
X = self.embedding_dropout(X, drop_range=self.drop_embedding_range, p_drop=self.drop_embedding_prop,
training=self.training)
X = X.permute(1, 0, 2)
h_0 = Variable(torch.zeros(self.n_layers * self.n_directions, _batch_size, self.hidden_size).to(self.device))
output, _ = self.rnn(X, h_0)
output = output[-1, :, :]
output = F.relu(self.linear0(output))
output = self.dropout(F.relu(self.linear1(output)))
l_embed[lang].append(output)
for k, v in l_embed.items():
l_embed[k] = torch.cat(v, dim=0).cpu().numpy()
return l_embed
def training_step(self, train_batch, batch_idx):
lX, ly = train_batch

View File

@ -229,7 +229,7 @@ class RecurrentGen(ViewGen):
l_pad = self.multilingualIndex.l_pad()
data = self.multilingualIndex.l_devel_index()
# trainer = Trainer(gpus=self.gpus)
# self.model.eval()
self.model.eval()
time_init = time()
l_embeds = self.model.encode(data, l_pad, batch_size=256)
transform_time = round(time() - time_init, 3)