Set arguments in order to reproduce 'master' performances with Neural setting

This commit is contained in:
andrea 2021-01-29 18:18:47 +01:00
parent 0e01d654cf
commit b3275667bb
2 changed files with 26 additions and 10 deletions

30
main.py
View File

@ -41,14 +41,14 @@ def main(args):
embedder_list.append(wceEmbedder) embedder_list.append(wceEmbedder)
if args.gru_embedder: if args.gru_embedder:
rnnEmbedder = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=args.gru_wce, batch_size=256, rnnEmbedder = RecurrentGen(multilingualIndex, pretrained_embeddings=lMuse, wce=args.gru_wce,
nepochs=args.nepochs_rnn, patience=args.patience_rnn, gpus=args.gpus, batch_size=args.batch_rnn, nepochs=args.nepochs_rnn, patience=args.patience_rnn,
n_jobs=args.n_jobs) gpus=args.gpus, n_jobs=args.n_jobs)
embedder_list.append(rnnEmbedder) embedder_list.append(rnnEmbedder)
if args.bert_embedder: if args.bert_embedder:
bertEmbedder = BertGen(multilingualIndex, batch_size=4, nepochs=args.nepochs_bert, gpus=args.gpus, bertEmbedder = BertGen(multilingualIndex, batch_size=args.batch_bert, nepochs=args.nepochs_bert,
n_jobs=args.n_jobs) patience=args.patience_bert, gpus=args.gpus, n_jobs=args.n_jobs)
bertEmbedder.transform(lX) bertEmbedder.transform(lX)
embedder_list.append(bertEmbedder) embedder_list.append(bertEmbedder)
@ -152,8 +152,20 @@ if __name__ == '__main__':
default=10) default=10)
parser.add_argument('--patience_rnn', dest='patience_rnn', type=int, metavar='', parser.add_argument('--patience_rnn', dest='patience_rnn', type=int, metavar='',
help='set early stop patience for the RecurrentGen, default 50', help='set early stop patience for the RecurrentGen, default 25',
default=50) default=25)
parser.add_argument('--patience_bert', dest='patience_bert', type=int, metavar='',
help='set early stop patience for the BertGen, default 5',
default=5)
parser.add_argument('--batch_rnn', dest='batch_rnn', type=int, metavar='',
help='set batchsize for the RecurrentGen, default 64',
default=64)
parser.add_argument('--batch_bert', dest='batch_bert', type=int, metavar='',
help='set batchsize for the BertGen, default 4',
default=4)
parser.add_argument('--muse_dir', dest='muse_dir', type=str, metavar='', parser.add_argument('--muse_dir', dest='muse_dir', type=str, metavar='',
help='Path to the MUSE polylingual word embeddings (default embeddings/)', help='Path to the MUSE polylingual word embeddings (default embeddings/)',
@ -163,8 +175,8 @@ if __name__ == '__main__':
help='Deploy WCE embedding as embedding layer of the GRU View Generator', help='Deploy WCE embedding as embedding layer of the GRU View Generator',
default=False) default=False)
parser.add_argument('--gru_dir', dest='gru_dir', type=str, metavar='', parser.add_argument('--rnn_dir', dest='rnn_dir', type=str, metavar='',
help='Set the path to a pretrained GRU model (i.e., -g view generator)', help='Set the path to a pretrained RNN model (i.e., -g view generator)',
default=None) default=None)
parser.add_argument('--bert_dir', dest='bert_dir', type=str, metavar='', parser.add_argument('--bert_dir', dest='bert_dir', type=str, metavar='',

View File

@ -40,10 +40,14 @@ optional arguments:
-j, --n_jobs number of parallel jobs, default is -1 i.e., all -j, --n_jobs number of parallel jobs, default is -1 i.e., all
--nepochs_rnn number of max epochs to train Recurrent embedder (i.e., -g), default 150 --nepochs_rnn number of max epochs to train Recurrent embedder (i.e., -g), default 150
--nepochs_bert number of max epochs to train Bert model (i.e., -g), default 10 --nepochs_bert number of max epochs to train Bert model (i.e., -g), default 10
--patience_rnn set early stop patience for the RecurrentGen, default 25
--patience_bert set early stop patience for the BertGen, default 5
--batch_rnn set batchsize for the RecurrentGen, default 64
--batch_bert set batchsize for the BertGen, default 4
--muse_dir path to the MUSE polylingual word embeddings (default ../embeddings) --muse_dir path to the MUSE polylingual word embeddings (default ../embeddings)
--gru_wce deploy WCE embedding as embedding layer of the GRU View Generator --gru_wce deploy WCE embedding as embedding layer of the GRU View Generator
--patience_rnn set early stop patience for the RecurrentGen, default 50 --patience_rnn set early stop patience for the RecurrentGen, default 50
--gru_dir set the path to a pretrained GRU model (i.e., -g view generator) --rnn_dir set the path to a pretrained RNN model (i.e., -g view generator)
--bert_dir set the path to a pretrained mBERT model (i.e., -b view generator) --bert_dir set the path to a pretrained mBERT model (i.e., -b view generator)
--gpus specifies how many GPUs to use per node --gpus specifies how many GPUs to use per node
``` ```