diff --git a/src/FPEC_andrea.py b/src/FPEC_andrea.py index 1618c33..3c351b6 100644 --- a/src/FPEC_andrea.py +++ b/src/FPEC_andrea.py @@ -6,7 +6,7 @@ from optparse import OptionParser from util.file import exists from util.results import PolylingualClassificationResults from sklearn.svm import SVC - +from util.util import get_learner, get_params parser = OptionParser() @@ -35,16 +35,22 @@ parser.add_option("-c", "--optimc", dest="optimc", action='store_true', parser.add_option("-j", "--n_jobs", dest="n_jobs",type=int, help="Number of parallel jobs (default is -1, all)", default=-1) -parser.add_option("-p", "--pca", dest="max_labels", type=int, - help="If less than number of target classes, will apply PCA to supervised matrix. If set to 0 it" - " will automatically search for the best number of components", default=300) +parser.add_option("-p", "--pca", dest="max_labels_S", type=int, + help="If smaller than number of target classes, PCA will be applied to supervised matrix. " + "If set to 0 it will automatically search for the best number of components. " + "If set to -1 it will apply PCA to the vstacked supervised matrix (PCA dim set to 50 atm)", + default=300) parser.add_option("-u", "--upca", dest="max_labels_U", type=int, - help="If smaller than Unsupervised Dimension, will apply PCA to unsupervised matrix. If set to 0 it" - " will automatically search for the best number of components", default=300) + help="If smaller than Unsupervised Dimension, PCA will be applied to unsupervised matrix." + " If set to 0 it will automatically search for the best number of components", default=300) parser.add_option("-l", dest="lang", type=str) +# parser.add_option("-a", dest="post_pca", +# help="If set to True, will apply PCA to the z-space (posterior probabilities stacked along with " +# "embedding space", default=False) + def get_learner(calibrate=False, kernel='linear'): return SVC(kernel=kernel, probability=calibrate, cache_size=1000, C=op.set_c, random_state=1, class_weight='balanced', gamma='auto') @@ -73,13 +79,12 @@ if __name__ == '__main__': data = MultilingualDataset.load(op.dataset) data.show_dimensions() - data.set_view(languages=['en','it', 'pt', 'sv'], categories=list(range(10))) + # data.set_view(languages=['en','it', 'pt', 'sv'], categories=list(range(10))) # data.set_view(languages=[op.lang]) # data.set_view(categories=list(range(10))) lXtr, lytr = data.training() lXte, lyte = data.test() - if op.set_c != -1: meta_parameters = None else: @@ -110,12 +115,12 @@ if __name__ == '__main__': config = {'unsupervised': True, 'supervised': True, 'we_type': op.we_type} - _config_id = 'M_and_F' + _config_id = 'M+F' - ##### TODO - config dict is redundant - we have already op argparse ... config['reduction'] = 'PCA' - config['max_label_space'] = op.max_labels + config['max_label_space'] = op.max_labels_S config['dim_reduction_unsupervised'] = op.max_labels_U + # config['post_pca'] = op.post_pca # config['plot_covariance_matrices'] = True result_id = dataset_file + 'PolyEmbedd_andrea_' + _config_id + ('_optimC' if op.optimc else '') @@ -125,7 +130,7 @@ if __name__ == '__main__': config=config, first_tier_learner=get_learner(calibrate=True), meta_learner=get_learner(calibrate=False, kernel='rbf'), - first_tier_parameters=get_params(dense=False), + first_tier_parameters=None, # TODO get_params(dense=False),--> first_tier should not be optimized - or not? meta_parameters=get_params(dense=True), n_jobs=op.n_jobs) @@ -140,6 +145,8 @@ if __name__ == '__main__': macrof1, microf1, macrok, microk = l_eval[lang] metrics.append([macrof1, microf1, macrok, microk]) print('Lang %s: macro-F1=%.3f micro-F1=%.3f' % (lang, macrof1, microf1)) - results.add_row(result_id, 'PolyEmbed_andrea', 'svm', _config_id, config['we_type'], op.optimc, op.dataset.split('/')[-1], - classifier.time, lang, macrof1, microf1, macrok, microk, '') + results.add_row('PolyEmbed_andrea', 'svm', _config_id, config['we_type'], + (config['max_label_space'], classifier.best_components), + config['dim_reduction_unsupervised'], op.optimc, op.dataset.split('/')[-1], classifier.time, + lang, macrof1, microf1, macrok, microk, '') print('Averages: MF1, mF1, MK, mK', np.mean(np.array(metrics), axis=0)) diff --git a/src/MLE_andrea.py b/src/MLE_andrea.py new file mode 100644 index 0000000..51cafc8 --- /dev/null +++ b/src/MLE_andrea.py @@ -0,0 +1,128 @@ +import os +from dataset_builder import MultilingualDataset +from learning.learners import * +from util.evaluation import * +from optparse import OptionParser +from util.file import exists +from util.results import PolylingualClassificationResults +from util.util import get_learner, get_params + +parser = OptionParser() + +parser.add_option("-d", "--dataset", dest="dataset", + help="Path to the multilingual dataset processed and stored in .pickle format", + default="/home/moreo/CLESA/rcv2/rcv1-2_doclist_trByLang1000_teByLang1000_processed_run0.pickle") + +parser.add_option("-o", "--output", dest="output", + help="Result file", type=str, default='./results/results.csv') + +parser.add_option("-e", "--mode-embed", dest="mode_embed", + help="Set the embedding to be used [none, unsupervised, supervised, both]", type=str, default='none') + +parser.add_option("-w", "--we-path", dest="we_path", + help="Path to the polylingual word embeddings", default='/home/andreapdr/CLESA/') + +parser.add_option('-t', "--we-type", dest="we_type", help="Aligned embeddings to use [FastText, MUSE]", type=str, + default='MUSE') + +parser.add_option("-s", "--set_c", dest="set_c",type=float, + help="Set the C parameter", default=1) + +parser.add_option("-c", "--optimc", dest="optimc", action='store_true', + help="Optimize hyperparameters", default=False) + +parser.add_option("-j", "--n_jobs", dest="n_jobs",type=int, + help="Number of parallel jobs (default is -1, all)", default=-1) + +parser.add_option("-p", "--pca", dest="max_labels_S", type=int, + help="If smaller than number of target classes, PCA will be applied to supervised matrix. " + "If set to 0 it will automatically search for the best number of components. " + "If set to -1 it will apply PCA to the vstacked supervised matrix (PCA dim set to 50 atm)", + default=300) + +parser.add_option("-u", "--upca", dest="max_labels_U", type=int, + help="If smaller than Unsupervised Dimension, PCA will be applied to unsupervised matrix." + " If set to 0 it will automatically search for the best number of components", default=300) + +parser.add_option("-l", dest="lang", type=str) + +if __name__ == '__main__': + (op, args) = parser.parse_args() + + assert exists(op.dataset), 'Unable to find file '+str(op.dataset) + assert not (op.set_c != 1. and op.optimc), 'Parameter C cannot be defined along with optim_c option' + + dataset_file = os.path.basename(op.dataset) + + results = PolylingualClassificationResults('./results/PLE_results.csv') + + data = MultilingualDataset.load(op.dataset) + data.show_dimensions() + + # data.set_view(languages=['en','it', 'pt', 'sv'], categories=list(range(10))) + # data.set_view(languages=[op.lang]) + # data.set_view(categories=list(range(10))) + lXtr, lytr = data.training() + lXte, lyte = data.test() + + if op.set_c != -1: + meta_parameters = None + else: + meta_parameters = [{'C': [1e3, 1e2, 1e1, 1, 1e-1]}] + + # Embeddings and WCE config + _available_mode = ['none', 'unsupervised', 'supervised', 'both'] + _available_type = ['MUSE', 'FastText'] + assert op.mode_embed in _available_mode, f'{op.mode_embed} not in {_available_mode}' + assert op.we_type in _available_type, f'{op.we_type} not in {_available_type}' + + if op.mode_embed == 'none': + config = {'unsupervised': False, + 'supervised': False, + 'we_type': None} + _config_id = 'None' + elif op.mode_embed == 'unsupervised': + config = {'unsupervised': True, + 'supervised': False, + 'we_type': op.we_type} + _config_id = 'M' + elif op.mode_embed == 'supervised': + config = {'unsupervised': False, + 'supervised': True, + 'we_type': None} + _config_id = 'F' + elif op.mode_embed == 'both': + config = {'unsupervised': True, + 'supervised': True, + 'we_type': op.we_type} + _config_id = 'M+F' + + config['reduction'] = 'PCA' + config['max_label_space'] = op.max_labels_S + config['dim_reduction_unsupervised'] = op.max_labels_U + # config['post_pca'] = op.post_pca + # config['plot_covariance_matrices'] = True + + result_id = dataset_file + 'MLE_andrea' + _config_id + ('_optimC' if op.optimc else '') + + ple = PolylingualEmbeddingsClassifier(wordembeddings_path='/home/andreapdr/CLESA/', + config = config, + learner=get_learner(calibrate=False), + c_parameters=get_params(dense=False), + n_jobs=op.n_jobs) + + print('# Fitting ...') + ple.fit(lXtr, lytr) + + print('# Evaluating ...') + ple_eval = evaluate_method(ple, lXte, lyte) + + metrics = [] + for lang in lXte.keys(): + macrof1, microf1, macrok, microk = ple_eval[lang] + metrics.append([macrof1, microf1, macrok, microk]) + print('Lang %s: macro-F1=%.3f micro-F1=%.3f' % (lang, macrof1, microf1)) + results.add_row('MLE', 'svm', _config_id, config['we_type'], + 'no','no', op.optimc, op.dataset.split('/')[-1], ple.time, + lang, macrof1, microf1, macrok, microk, '') + print('Averages: MF1, mF1, MK, mK', np.mean(np.array(metrics), axis=0)) diff --git a/src/NN_FPEC_andrea.py b/src/NN_FPEC_andrea.py new file mode 100644 index 0000000..156d726 --- /dev/null +++ b/src/NN_FPEC_andrea.py @@ -0,0 +1,92 @@ +from optparse import OptionParser +from util.results import PolylingualClassificationResults +from dataset_builder import MultilingualDataset +from keras.preprocessing.text import Tokenizer +from learning.learners import MonolingualNetSvm +from sklearn.svm import SVC +import pickle + +parser = OptionParser() + +parser.add_option("-d", "--dataset", dest="dataset", + help="Path to the multilingual dataset processed and stored in .pickle format", + default="/home/moreo/CLESA/rcv2/rcv1-2_doclist_trByLang1000_teByLang1000_processed_run0.pickle") + +parser.add_option("-c", "--optimc", dest="optimc", action='store_true', + help="Optimize hyperparameters", default=False) + +parser.add_option("-s", "--set_c", dest="set_c",type=float, + help="Set the C parameter", default=1) + +(op, args) = parser.parse_args() + + +################################################################################################################### + +def get_learner(calibrate=False, kernel='linear'): + return SVC(kernel=kernel, probability=calibrate, cache_size=1000, C=op.set_c, random_state=1, class_weight='balanced', gamma='auto') + + +def get_params(dense=False): + if not op.optimc: + return None + c_range = [1e4, 1e3, 1e2, 1e1, 1, 1e-1] + kernel = 'rbf' if dense else 'linear' + return [{'kernel': [kernel], 'C': c_range, 'gamma':['auto']}] + + +# PREPROCESS TEXT AND SAVE IT ... both for SVM and NN +def preprocess_data(lXtr, lXte, lytr, lyte): + tokenized_tr = dict() + tokenized_te = dict() + for lang in lXtr.keys(): + alltexts = ' '.join(lXtr[lang]) + tokenizer = Tokenizer() + tokenizer.fit_on_texts(alltexts.split(' ')) + tokenizer.oov_token = len(tokenizer.word_index)+1 + # dumping train set + sequences_tr = tokenizer.texts_to_sequences(lXtr[lang]) + tokenized_tr[lang] = (tokenizer.word_index, sequences_tr, lytr[lang]) + # dumping test set + sequences_te = tokenizer.texts_to_sequences(lXte[lang]) + tokenized_te[lang] = (tokenizer.word_index, sequences_te, lyte[lang]) + + with open('/home/andreapdr/CLESA/preprocessed_dataset_nn/rcv1-2_train.pickle', 'wb') as f: + pickle.dump(tokenized_tr, f) + + with open('/home/andreapdr/CLESA/preprocessed_dataset_nn/rcv1-2_test.pickle', 'wb') as f: + pickle.dump(tokenized_tr, f) + + print('Successfully dumped data') + +# def load_preprocessed(): +# with open('/home/andreapdr/CLESA/preprocessed_dataset_nn/rcv1-2_train.pickle', 'rb') as f: +# return pickle.load(f) +# +# def build_embedding_matrix(lang, word_index): +# type = 'MUSE' +# path = '/home/andreapdr/CLESA/' +# MUSE = EmbeddingsAligned(type, path, lang, word_index.keys()) +# return MUSE + + +########## MAIN ################################################################################################# + +if __name__ == '__main__': + results = PolylingualClassificationResults('./results/NN_FPEC_results.csv') + data = MultilingualDataset.load(op.dataset) + lXtr, lytr = data.training() + lXte, lyte = data.test() + + if op.set_c != -1: + meta_parameters = None + else: + meta_parameters = [{'C': [1e3, 1e2, 1e1, 1, 1e-1]}] + + test_architecture = MonolingualNetSvm(lXtr, + lytr, + first_tier_learner=get_learner(calibrate=True), + first_tier_parameters=None, + n_jobs=1) + + test_architecture.fit() diff --git a/src/data/embeddings.py b/src/learning/embeddings.py similarity index 77% rename from src/data/embeddings.py rename to src/learning/embeddings.py index 50c09de..65a5338 100644 --- a/src/data/embeddings.py +++ b/src/learning/embeddings.py @@ -3,8 +3,9 @@ import pickle from torchtext.vocab import Vectors import torch from abc import ABC, abstractmethod -from data.supervised import get_supervised_embeddings +from learning.supervised import get_supervised_embeddings from util.decompositions import * +from util.SIF_embed import * class PretrainedEmbeddings(ABC): @@ -48,7 +49,7 @@ class WordEmbeddings: print('loading pkl in {}'.format(we_path + '.pkl')) (worddim, we) = pickle.load(open(we_path + '.pkl', 'rb')) else: - word_registry=set() + word_registry = set() lines = open(we_path).readlines() nwords, dims = [int(x) for x in lines[0].split()] print('reading we of {} dimensions'.format(dims)) @@ -61,13 +62,13 @@ class WordEmbeddings: word, *vals = line.split() wordp = word_preprocessor(word) if word_preprocessor is not None else word if wordp: - wordp=wordp[0] + wordp = wordp[0] if wordp in word_registry: print('warning: word <{}> generates a duplicate <{}> after preprocessing'.format(word,wordp)) elif len(vals) == dims: worddim[wordp] = index we[index, :] = np.array(vals).astype(float) - index+=1 + index += 1 # else: # print('warning: word <{}> generates an empty string after preprocessing'.format(word)) we = we[:index] @@ -151,7 +152,6 @@ class FastTextWikiNews(Vectors): def __init__(self, cache, language="en", **kwargs): url = self.url_base.format(language) - # name = self.path.format(language) name = cache + self._name.format(language) super(FastTextWikiNews, self).__init__(name, cache=cache, url=url, **kwargs) @@ -211,44 +211,75 @@ class StorageEmbeddings: def _add_embeddings_unsupervised(self, type, docs, vocs, max_label_space=300): for lang in docs.keys(): - nC = self.lang_U[lang].shape[1] print(f'# [unsupervised-matrix {type}] for {lang}') voc = np.asarray(list(zip(*sorted(vocs[lang].items(), key=lambda x: x[1])))[0]) self.lang_U[lang] = EmbeddingsAligned(type, self.path, lang, voc).vectors - # if self.lang_U[lang].shape[1] > dim != 0: - # print(f'unsupervised matrix has more dimensions ({self.lang_U[lang].shape[1]}) than' - # f' the allowed limit {dim}. Applying PCA(n_components={dim})') - # pca = PCA(n_components=dim) - # self.lang_U[lang] = pca.fit_transform(self.lang_U[lang]) print(f'Matrix U (weighted sum) of shape {self.lang_U[lang].shape}\n') + nC = self.lang_U[lang].shape[1] if max_label_space == 0: print(f'Computing optimal number of PCA components along matrices U') optimal_n = get_optimal_dim(self.lang_U, 'U') self.lang_U = run_pca(optimal_n, self.lang_U) elif max_label_space < nC: + print(f'Applying PCA to unsupervised matrix U') self.lang_U = run_pca(max_label_space, self.lang_U) return - def _add_emebeddings_supervised(self, docs, labels, reduction, max_label_space, voc): - # if max_label_space == 0: - # print('Computing optimal number of PCA components along matrices S...') - # optimal_n = self.get_optimal_supervised_components(docs, labels) - # max_label_space = optimal_n + def _add_embeddings_supervised(self, docs, labels, reduction, max_label_space, voc): + only_well_represented_C = False # TODO testing + if only_well_represented_C: + labels = labels.copy() + min_prevalence = 0 + print(f'# REDUCING LABELS TO min_prevalence = {min_prevalence} in order to compute WCE Matrix ...') + langs = list(docs.keys()) + well_repr_cats = np.logical_and.reduce([labels[lang].sum(axis=0)>min_prevalence for lang in langs]) + for lang in langs: + labels[lang] = labels[lang][:, well_repr_cats] + print(f'Target number reduced to: {labels[lang].shape[1]}\n') + for lang in docs.keys(): # compute supervised matrices S - then apply PCA - nC = self.lang_S[lang].shape[1] print(f'# [supervised-matrix] for {lang}') - self.lang_S[lang] = get_supervised_embeddings(docs[lang], labels[lang], reduction, max_label_space, voc[lang], lang) + self.lang_S[lang] = get_supervised_embeddings(docs[lang], labels[lang], + reduction, max_label_space, voc[lang], lang) + nC = self.lang_S[lang].shape[1] print(f'[embedding matrix done] of shape={self.lang_S[lang].shape}\n') - if max_label_space == 0: + if max_label_space == 0: # looking for best n_components analyzing explained_variance_ratio + print(f'Computing optimal number of PCA components along matrices S') optimal_n = get_optimal_dim(self.lang_S, 'S') + print(f'Applying PCA(n_components={optimal_n})') self.lang_S = run_pca(optimal_n, self.lang_S) - elif max_label_space < nC: + elif max_label_space == -1: # applying pca to the verticals stacked matrix of WCE embeddings + print(f'Computing PCA on vertical stacked WCE embeddings') + languages = self.lang_S.keys() + _temp_stack = np.vstack([self.lang_S[lang] for lang in languages]) # stacking WCE vertically + stacked_pca = PCA(n_components=_temp_stack.shape[1]) + stacked_pca.fit(_temp_stack) + best_n = None + _r = stacked_pca.explained_variance_ratio_ + _r = np.cumsum(_r) + plt.plot(_r, label='Stacked Supervised') + for i in range(len(_r) - 1, 1, -1): + delta = _r[i] - _r[i - 1] + if delta > 0: + best_n = i + break + plt.show() + stacked_pca = PCA(n_components=best_n) + stacked_pca.fit(_temp_stack) + print(f'Applying PCA(n_components={i}') + for lang in languages: + self.lang_S[lang] = stacked_pca.transform(self.lang_S[lang]) + elif max_label_space <= nC: # less or equal in order to reduce it to the same initial dimension + print(f'Computing PCA on Supervised Matrix PCA(n_components:{max_label_space})') self.lang_S = run_pca(max_label_space, self.lang_S) return + def SIF_embeddings(self): + print('todo') # TODO + def _concatenate_embeddings(self, docs): _r = dict() for lang in self.lang_U.keys(): @@ -259,13 +290,15 @@ class StorageEmbeddings: if config['unsupervised']: self._add_embeddings_unsupervised(config['we_type'], docs, vocs, config['dim_reduction_unsupervised']) if config['supervised']: - self._add_emebeddings_supervised(docs, labels, config['reduction'], config['max_label_space'], vocs) + self._add_embeddings_supervised(docs, labels, config['reduction'], config['max_label_space'], vocs) return self - def predict(self, config, docs): if config['supervised'] and config['unsupervised']: return self._concatenate_embeddings(docs) + # todo testing applying pca to hstack muse + wce + # _reduced = self._concatenate_embeddings(docs) + # return run_pca(300, _reduced) elif config['supervised']: _r = dict() for lang in docs.keys(): @@ -274,5 +307,5 @@ class StorageEmbeddings: _r = dict() for lang in docs.keys(): _r[lang] = docs[lang].dot(self.lang_U[lang]) - return _r + return _r diff --git a/src/learning/learners.py b/src/learning/learners.py index 96e200c..a678905 100644 --- a/src/learning/learners.py +++ b/src/learning/learners.py @@ -1,6 +1,6 @@ import numpy as np import time -from data.embeddings import WordEmbeddings, StorageEmbeddings +from learning.embeddings import WordEmbeddings, StorageEmbeddings from scipy.sparse import issparse from sklearn.multiclass import OneVsRestClassifier from sklearn.model_selection import GridSearchCV @@ -8,7 +8,8 @@ from sklearn.model_selection import KFold from joblib import Parallel, delayed from sklearn.feature_extraction.text import TfidfVectorizer from transformers.StandardizeTransformer import StandardizeTransformer -# from sklearn.decomposition import PCA +from sklearn.decomposition import PCA +from models.cnn_class import CNN_pdr def _sort_if_sparse(X): @@ -214,11 +215,6 @@ class NaivePolylingualClassifier: models = Parallel(n_jobs=self.n_jobs)\ (delayed(MonolingualClassifier(self.base_learner, parameters=self.parameters).fit)((lX[lang]),ly[lang]) for lang in langs) - # - # models = [MonolingualClassifier(self.base_learner, parameters=self.parameters) for lang in langs] - # - # for model, lang in zip(models, langs): - # model.fit(lX[lang], ly[lang]) self.model = {lang: models[i] for i, lang in enumerate(langs)} self.empty_categories = {lang:self.model[lang].empty_categories for lang in langs} @@ -329,6 +325,132 @@ class MonolingualClassifier: return self.best_params_ +class AndreaCLF(FunnellingPolylingualClassifier): + def __init__(self, + we_path, + config, + first_tier_learner, + meta_learner, + first_tier_parameters=None, + meta_parameters=None, + folded_projections=1, + calmode='cal', + n_jobs=-1): + + super().__init__(first_tier_learner, + meta_learner, + first_tier_parameters, + meta_parameters, + folded_projections, + calmode, + n_jobs) + + self.pca_independent_space = PCA(n_components=50) + self.we_path = we_path + self.config = config + self.lang_word2idx = dict() + self.languages = [] + self.lang_tfidf = {} + self.embedding_space = None + self.model = None + self.time = None + self.best_components = 'not set' # if auto optimize pca, it will store the optimal number of components + + def vectorize(self, lX, prediction=False): + langs = list(lX.keys()) + print(f'# tfidf-vectorizing docs') + if prediction: + + for lang in langs: + assert lang in self.lang_tfidf.keys(), 'no tf-idf for given language' + tfidf_vectorizer = self.lang_tfidf[lang] + lX[lang] = tfidf_vectorizer.transform(lX[lang]) + return self + + for lang in langs: + tfidf_vectorizer = TfidfVectorizer(sublinear_tf=True, use_idf=True) + self.languages.append(lang) + tfidf_vectorizer.fit(lX[lang]) + lX[lang] = tfidf_vectorizer.transform(lX[lang]) + self.lang_word2idx[lang] = tfidf_vectorizer.vocabulary_ + self.lang_tfidf[lang] = tfidf_vectorizer + return self + + def _get_zspace(self, lXtr, lYtr): + print('\nfitting the projectors... {}'.format(list(lXtr.keys()))) + self.doc_projector.fit(lXtr, lYtr) + + print('\nprojecting the documents') + lZ = self._projection(self.doc_projector, lXtr) + + return lZ, lYtr + + def fit(self, lX, ly): + tinit = time.time() + print('Vectorizing documents...') + self.vectorize(lX) + + for lang in self.languages: + print(f'{lang}->{lX[lang].shape}') + + Z, zy = self._get_zspace(lX, ly) + + if self.config['supervised'] or self.config['unsupervised']: + self.embedding_space = StorageEmbeddings(self.we_path).fit(self.config, lX, self.lang_word2idx, ly) + _embedding_space = self.embedding_space.predict(self.config, lX) + if self.config['max_label_space'] == 0: + _cum_dimension = _embedding_space[list(_embedding_space.keys())[0]].shape[1] + if _cum_dimension - 300 > 0: + _temp = _cum_dimension - 300 + else: + _temp = _cum_dimension + self.best_components = _temp + # h_stacking posterior probabilities with (U) and/or (S) matrices + for lang in self.languages: + Z[lang] = np.hstack((Z[lang], _embedding_space[lang])) + + # stacking Z space vertically + _vertical_Z = np.vstack([Z[lang] for lang in self.languages]) + _vertical_Zy = np.vstack([zy[lang] for lang in self.languages]) + + self.standardizer = StandardizeTransformer() + _vertical_Z = self.standardizer.fit_predict(_vertical_Z) + + # todo testing ... + # if self.config['post_pca']: + # print(f'Applying PCA({"dim ?? TODO"}) to Z-space ...') + # self.pca_independent_space.fit(_vertical_Z) + # _vertical_Z = self.pca_independent_space.transform(_vertical_Z) + + print('fitting the Z-space of shape={}'.format(_vertical_Z.shape)) + self.model = MonolingualClassifier(base_learner=self.meta_learner, parameters=self.meta_parameters, + n_jobs=self.n_jobs) + self.model.fit(_vertical_Z, _vertical_Zy) + self.time = time.time() - tinit + print(f'\nTotal training time elapsed: {round((self.time/60), 2)} min') + + def predict(self, lX, ly): + print('Vectorizing documents') + self.vectorize(lX, prediction=True) + lZ = self._projection(self.doc_projector, lX) + + if self.config['supervised'] or self.config['unsupervised']: + _embedding_space = self.embedding_space.predict(self.config, lX) + + for lang in lX.keys(): + lZ[lang] = np.hstack((lZ[lang], _embedding_space[lang])) + + for lang in lZ.keys(): + print(lZ[lang].shape) + # todo testing + lZ[lang] = self.standardizer.predict(lZ[lang]) + # if self.config['post_pca']: + # print(f'Applying PCA({"dim ?? TODO"}) to Z-space ...') + # lZ[lang] = self.pca_independent_space.transform(lZ[lang]) + + return _joblib_transform_multiling(self.model.predict, lZ, n_jobs=self.n_jobs) + + class PolylingualEmbeddingsClassifier: """ This classifier creates document embeddings by a tfidf weighted average of polylingual embeddings from the article @@ -340,7 +462,7 @@ class PolylingualEmbeddingsClassifier: } url: https://github.com/facebookresearch/MUSE """ - def __init__(self, wordembeddings_path, learner, c_parameters=None, n_jobs=-1): + def __init__(self, wordembeddings_path, config, learner, c_parameters=None, n_jobs=-1): """ :param wordembeddings_path: the path to the directory containing the polylingual embeddings :param learner: the learner @@ -348,11 +470,15 @@ class PolylingualEmbeddingsClassifier: :param n_jobs: the number of concurrent threads """ self.wordembeddings_path = wordembeddings_path + self.config = config self.learner = learner self.c_parameters=c_parameters self.n_jobs = n_jobs self.lang_tfidf = {} self.model = None + self.languages = [] + self.lang_word2idx = dict() + self.embedding_space = None def fit_vectorizers(self, lX): for lang in lX.keys(): @@ -362,6 +488,27 @@ class PolylingualEmbeddingsClassifier: tfidf.fit(docs) self.lang_tfidf[lang] = tfidf + + def vectorize(self, lX, prediction=False): + langs = list(lX.keys()) + print(f'# tfidf-vectorizing docs') + if prediction: + + for lang in langs: + assert lang in self.lang_tfidf.keys(), 'no tf-idf for given language' + tfidf_vectorizer = self.lang_tfidf[lang] + lX[lang] = tfidf_vectorizer.transform(lX[lang]) + return self + + for lang in langs: + tfidf_vectorizer = TfidfVectorizer(sublinear_tf=True, use_idf=True) + self.languages.append(lang) + tfidf_vectorizer.fit(lX[lang]) + lX[lang] = tfidf_vectorizer.transform(lX[lang]) + self.lang_word2idx[lang] = tfidf_vectorizer.vocabulary_ + self.lang_tfidf[lang] = tfidf_vectorizer + return self + def embed(self, docs, lang): assert lang in self.lang_tfidf, 'unknown language' tfidf_vectorizer = self.lang_tfidf[lang] @@ -394,31 +541,34 @@ class PolylingualEmbeddingsClassifier: tinit = time.time() langs = list(lX.keys()) WEtr, Ytr = [], [] - self.fit_vectorizers(lX) # if already fit, does nothing - _lX = dict() - for lang in langs: - _lX[lang] = self.lang_tfidf[lang].transform(lX[lang]) - WEtr.append(self.embed(lX[lang], lang)) - Ytr.append(ly[lang]) + # self.fit_vectorizers(lX) # if already fit, does nothing + self.vectorize(lX) + # config = {'unsupervised' : False, 'supervised': True} + self.embedding_space = StorageEmbeddings(self.wordembeddings_path).fit(self.config, lX, self.lang_word2idx, ly) + WEtr = self.embedding_space.predict(self.config, lX) + # for lang in langs: + # WEtr.append(self.embed(lX[lang], lang)) # todo embed with other matrices + # Ytr.append(ly[lang]) - # TODO @Andrea --> here embeddings should be stacked horizontally! - WEtr = np.vstack(WEtr) - Ytr = np.vstack(Ytr) + WEtr = np.vstack([WEtr[lang] for lang in langs]) + Ytr = np.vstack([ly[lang] for lang in langs]) self.embed_time = time.time() - tinit print('fitting the WE-space of shape={}'.format(WEtr.shape)) self.model = MonolingualClassifier(base_learner=self.learner, parameters=self.c_parameters, n_jobs=self.n_jobs) - self.model.fit(_lX['da'], ly['da']) + self.model.fit(WEtr, Ytr) self.time = time.time() - tinit return self - def predict(self, lX): + def predict(self, lX, lY): """ :param lX: a dictionary {language_label: [list of preprocessed documents]} """ assert self.model is not None, 'predict called before fit' + self.vectorize(lX, prediction=True) langs = list(lX.keys()) - lWEte = {lang:self.embed(lX[lang], lang) for lang in langs} # parallelizing this may consume too much memory + lWEte = self.embedding_space.predict(self.config, lX) + # lWEte = {lang:self.embed(lX[lang], lang) for lang in langs} # parallelizing this may consume too much memory return _joblib_transform_multiling(self.model.predict, lWEte, n_jobs=self.n_jobs) def predict_proba(self, lX): @@ -427,44 +577,78 @@ class PolylingualEmbeddingsClassifier: """ assert self.model is not None, 'predict called before fit' langs = list(lX.keys()) - # lWEte = {lang:self.embed(lX[lang], lang) for lang in langs} # parallelizing this may consume too much memory - return _joblib_transform_multiling(self.model.predict_proba, self.lang_tfidf['da'], n_jobs=self.n_jobs) + lWEte = {lang:self.embed(lX[lang], lang) for lang in langs} # parallelizing this may consume too much memory + return _joblib_transform_multiling(self.model.predict_proba, lWEte, n_jobs=self.n_jobs) def best_params(self): return self.model.best_params() -class AndreaCLF(FunnellingPolylingualClassifier): - def __init__(self, - we_path, - config, - first_tier_learner, - meta_learner, - first_tier_parameters=None, - meta_parameters=None, - folded_projections=1, - calmode='cal', - n_jobs=-1): - - super().__init__(first_tier_learner, - meta_learner, - first_tier_parameters, - meta_parameters, - folded_projections, - calmode, - n_jobs) - - self.pca_independent_space = PCA(n_components=100) - self.we_path = we_path - self.config = config - self.lang_word2idx = dict() +class MonolingualNetSvm: + """ + testing: funnelling with NN managing word embeddings compositionality. An ensemble of n-SVMs (n equals to the + number of training languages) is first fit on the data, generating the documents projection in the Z-space. Next, + the projection are fed to a single NN with their respective document embeddings. The documents are projected into + the embedding space while preserving their dimensionality (output dim is 300). These projection are horizonatally + concatenated with the respective projection and passed through a fC layer with sigmoid act and output dim equal + to the number of target classes. + # TODO ATM testing with only 1 language + """ + def __init__(self, lX, ly, first_tier_learner, first_tier_parameters, n_jobs): + self.lX = lX + self.ly = ly + # SVM Attributes + self.doc_projector = NaivePolylingualClassifier(first_tier_learner, first_tier_parameters, + n_jobs=n_jobs) + self.calmode = 'cal' self.languages = [] + self.lang_word2idx = dict() self.lang_tfidf = {} - self.embedding_space = None - self.model = None - self.time = None + self.base_learner = 'TODO' + self.parameters = 'TODO' + # NN Attributes + self.NN = 'TODO' - def vectorize(self, lX, prediction=False): + + def load_preprocessed(self): + """ + in order to speed up the process, documents are first tokenized in the "main". Here, tokenized docs, word_index, and + targets are loaded. + :return: dict[lang] = (word_index, tokenized_docs, targets) + """ + import pickle + with open('/home/andreapdr/CLESA/preprocessed_dataset_nn/rcv1-2_train.pickle', 'rb') as f: + return pickle.load(f) + + def _build_embedding_matrix(self, lang, word_index): + """ + build embedding matrix by filtering out OOV embeddings + :param lang: + :param word_index: + :return: filtered embedding matrix + """ + from learning.embeddings import EmbeddingsAligned + type = 'MUSE' + path = '/home/andreapdr/CLESA/' + MUSE = EmbeddingsAligned(type, path, lang, word_index.keys()) + return MUSE + + def get_data_and_embed(self, data_dict): + from keras.preprocessing.sequence import pad_sequences + + langs = data_dict.keys() + lang_embedding_matrix = dict() + nn_lXtr = dict() + nn_lytr = dict() + + for lang in langs: + lang_embedding_matrix[lang] = self._build_embedding_matrix(lang, data_dict[lang][0]) + nn_lXtr[lang] = pad_sequences(data_dict[lang][1], 100, padding='post') + nn_lytr[lang] = [data_dict[lang][2]] + + return nn_lXtr, nn_lytr, lang_embedding_matrix + + def svm_vectorize(self, lX, prediction=False): langs = list(lX.keys()) print(f'# tfidf-vectorizing docs') if prediction: @@ -473,7 +657,6 @@ class AndreaCLF(FunnellingPolylingualClassifier): tfidf_vectorizer = self.lang_tfidf[lang] lX[lang] = tfidf_vectorizer.transform(lX[lang]) return self - for lang in langs: tfidf_vectorizer = TfidfVectorizer(sublinear_tf=True, use_idf=True) self.languages.append(lang) @@ -481,9 +664,8 @@ class AndreaCLF(FunnellingPolylingualClassifier): lX[lang] = tfidf_vectorizer.transform(lX[lang]) self.lang_word2idx[lang] = tfidf_vectorizer.vocabulary_ self.lang_tfidf[lang] = tfidf_vectorizer - return self + return lX - # @override std class method def _get_zspace(self, lXtr, lYtr): print('\nfitting the projectors... {}'.format(list(lXtr.keys()))) self.doc_projector.fit(lXtr, lYtr) @@ -493,57 +675,58 @@ class AndreaCLF(FunnellingPolylingualClassifier): return lZ, lYtr - # @override std class method - def fit(self, lX, ly): - tinit = time.time() - print('Vectorizing documents...') - self.vectorize(lX) + def _projection(self, doc_projector, lX): + """ + Decides the projection function to be applied; predict_proba if the base classifiers are calibrated or + decision_function if otherwise + :param doc_projector: the document projector (a NaivePolylingualClassifier) + :param lX: {lang:matrix} to train + :return: the projection, applied with predict_proba or decision_function + """ + if self.calmode=='cal': + return doc_projector.predict_proba(lX) + else: + l_decision_scores = doc_projector.decision_function(lX) + if self.calmode=='sigmoid': + def sigmoid(x): return 1 / (1 + np.exp(-x)) + for lang in l_decision_scores.keys(): + l_decision_scores[lang] = sigmoid(l_decision_scores[lang]) + return l_decision_scores - for lang in self.languages: - print(f'{lang}->{lX[lang].shape}') + def fit(self): + """ + # 1. Fit SVM to generate posterior probabilities: + # 1.1 Gather documents and vectorize them as in other SVM classifiers + # 2. Fit NN + # 2.1 Gather documents and build NN dataset by indexing wrt embedding matrix + # 2.2 Fit NN first-layer to generate compositional doc embedding + # 2.3 H-stack doc-embed and posterior P + # 2.4 Feed stacked vector to output layer (sigmoid act): output Nc + # 2.5 Train it... + """ - Z, zy = self._get_zspace(lX, ly) + # load pre-processed data + data_dict = self.load_preprocessed() + # build embedding matrices and neural network document training set + nn_lXtr, nn_lytr, lang_embedding_matrix = self.get_data_and_embed(data_dict) + # TF-IDF vectorzing documents for SVM classifier + svm_lX = self.svm_vectorize(self.lX) - if self.config['supervised'] or self.config['unsupervised']: - self.embedding_space = StorageEmbeddings(self.we_path).fit(self.config, lX, self.lang_word2idx, ly) - _embedding_space = self.embedding_space.predict(self.config, lX) - # h_stacking posterior probabilities with (U) and/or (S) matrices - for lang in self.languages: - Z[lang] = np.hstack((Z[lang], _embedding_space[lang])) + # just testing on a smaller subset of data + test_svm_lX = dict() + test_svm_ly = dict() + test_svm_lX['it'] = svm_lX['it'][:10, :] + test_svm_ly['it'] = self.ly['it'][:10, :] + test_nn_data = nn_lXtr['it'][:10] - # stacking Z space vertically - _vertical_Z = np.vstack([Z[lang] for lang in self.languages]) - _vertical_Zy = np.vstack([zy[lang] for lang in self.languages]) + # projecting document into Z space by SVM + svm_Z, _ = self._get_zspace(test_svm_lX, test_svm_ly) - # todo testing ... - # self.pca_independent_space.fit(_vertical_Z) - # _vertical_Z = self.pca_independent_space.transform(_vertical_Z) + # initializing net and forward pass + net = CNN_pdr(73, 1, 300, len(lang_embedding_matrix['it'].vectors), 300, lang_embedding_matrix['it'].vectors) + out = net.forward(test_nn_data, svm_Z['it']) - self.standardizer = StandardizeTransformer() - _vertical_Z = self.standardizer.fit_predict(_vertical_Z) + print('TODO') - print('fitting the Z-space of shape={}'.format(_vertical_Z.shape)) - self.model = MonolingualClassifier(base_learner=self.meta_learner, parameters=self.meta_parameters, - n_jobs=self.n_jobs) - self.model.fit(_vertical_Z, _vertical_Zy) - self.time = time.time() - tinit - print(f'\nTotal training time elapsed: {round((self.time/60), 2)} min') - - def predict(self, lX, ly): - print('Vectorizing documents') - self.vectorize(lX, prediction=True) - lZ = self._projection(self.doc_projector, lX) - - if self.config['supervised'] or self.config['unsupervised']: - _embedding_space = self.embedding_space.predict(self.config, lX) - - for lang in lX.keys(): - lZ[lang] = np.hstack((lZ[lang], _embedding_space[lang])) - - for lang in lZ.keys(): - print(lZ[lang].shape) - # todo testing - # lZ[lang] = self.pca_independent_space.transform(lZ[lang]) - lZ[lang] = self.standardizer.predict(lZ[lang]) - - return _joblib_transform_multiling(self.model.predict, lZ, n_jobs=self.n_jobs) + def net(self): + pass \ No newline at end of file diff --git a/src/data/supervised.py b/src/learning/supervised.py similarity index 100% rename from src/data/supervised.py rename to src/learning/supervised.py diff --git a/src/models/cnn_class.py b/src/models/cnn_class.py new file mode 100644 index 0000000..a47d5fc --- /dev/null +++ b/src/models/cnn_class.py @@ -0,0 +1,42 @@ +import torch.nn as nn +from torch.nn import functional as F +import torch + +class CNN_pdr(nn.Module): + + def __init__(self, output_size, out_channels, compositional_dim, vocab_size, emb_dim, embeddings=None, drop_embedding_range=None, + drop_embedding_prop=0, drop_prob=0.5): + super(CNN_pdr, self).__init__() + self.vocab_size = vocab_size + self.emb_dim = emb_dim + self.embeddings = torch.FloatTensor(embeddings) + self.embedding_layer = nn.Embedding(vocab_size, emb_dim, _weight=self.embeddings) + self.kernel_heights = kernel_heights=[3,5,7] + self.stride = 1 + self.padding = 0 + self.drop_embedding_range = drop_embedding_range + self.drop_embedding_prop = drop_embedding_prop + assert 0 <= drop_embedding_prop <= 1, 'drop_embedding_prop: wrong range' + self.nC = 73 + + self.conv1 = nn.Conv2d(1, compositional_dim, (self.kernel_heights[0], self.emb_dim), self.stride, self.padding) + self.dropout = nn.Dropout(drop_prob) + self.label = nn.Linear(len(kernel_heights) * out_channels, output_size) + self.fC = nn.Linear(compositional_dim + self.nC, self.nC) + + + def forward(self, x, svm_output): + x = torch.LongTensor(x) + svm_output = torch.FloatTensor(svm_output) + x = self.embedding_layer(x) + x = self.conv1(x.unsqueeze(1)) + x = F.relu(x.squeeze(3)) + x = F.max_pool1d(x, x.size()[2]).squeeze(2) + x = torch.cat((x, svm_output), 1) + x = F.sigmoid(self.fC(x)) + return x #.detach().numpy() + + # logits = self.label(x) + # return logits + + diff --git a/src/results/results_manager.py b/src/results/results_manager.py new file mode 100644 index 0000000..fdee8d8 --- /dev/null +++ b/src/results/results_manager.py @@ -0,0 +1,7 @@ +import pandas as pd +import numpy as np + +df = pd.read_csv("/home/andreapdr/funneling_pdr/src/results/results.csv", delimiter='\t') +pivot = pd.pivot_table(df, values=['time', 'macrof1', 'microf1', 'macrok', 'microk'], index=['method', 'embed'], aggfunc=[np.mean, np.std]) +print(pivot) +print('Finished ...') \ No newline at end of file diff --git a/src/util/SIF_embed.py b/src/util/SIF_embed.py new file mode 100644 index 0000000..05e2ff7 --- /dev/null +++ b/src/util/SIF_embed.py @@ -0,0 +1,56 @@ +import numpy as np +from sklearn.decomposition import TruncatedSVD + +def get_weighted_average(We, x, w): + """ + Compute the weighted average vectors + :param We: We[i,:] is the vector for word i + :param x: x[i, :] are the indices of the words in sentence i + :param w: w[i, :] are the weights for the words in sentence i + :return: emb[i, :] are the weighted average vector for sentence i + """ + n_samples = x.shape[0] + emb = np.zeros((n_samples, We.shape[1])) + for i in range(n_samples): + emb[i,:] = w[i,:].dot(We[x[i,:],:]) / np.count_nonzero(w[i,:]) + return emb + +def compute_pc(X,npc=1): + """ + Compute the principal components. DO NOT MAKE THE DATA ZERO MEAN! + :param X: X[i,:] is a data point + :param npc: number of principal components to remove + :return: component_[i,:] is the i-th pc + """ + svd = TruncatedSVD(n_components=npc, n_iter=7, random_state=0) + svd.fit(X) + return svd.components_ + +def remove_pc(X, npc=1): + """ + Remove the projection on the principal components + :param X: X[i,:] is a data point + :param npc: number of principal components to remove + :return: XX[i, :] is the data point after removing its projection + """ + pc = compute_pc(X, npc) + if npc==1: + XX = X - X.dot(pc.transpose()) * pc + else: + XX = X - X.dot(pc.transpose()).dot(pc) + return XX + + +def SIF_embedding(We, x, w, params): + """ + Compute the scores between pairs of sentences using weighted average + removing the projection on the first principal component + :param We: We[i,:] is the vector for word i + :param x: x[i, :] are the indices of the words in the i-th sentence + :param w: w[i, :] are the weights for the words in the i-th sentence + :param params.rmpc: if >0, remove the projections of the sentence embeddings to their first principal component + :return: emb, emb[i, :] is the embedding for sentence i + """ + emb = get_weighted_average(We, x, w) + if params.rmpc > 0: + emb = remove_pc(emb, params.rmpc) + return emb \ No newline at end of file diff --git a/src/util/decompositions.py b/src/util/decompositions.py index 9029b33..9d14a0c 100644 --- a/src/util/decompositions.py +++ b/src/util/decompositions.py @@ -2,6 +2,7 @@ from sklearn.decomposition import PCA import numpy as np import matplotlib.pyplot as plt + def run_pca(dim, X): """ :param dim: number of pca components to keep @@ -46,4 +47,4 @@ def get_optimal_dim(X, embed_type): plt.axvline(best_n, color='r', label='optimal N') plt.legend() plt.show() - return best_n \ No newline at end of file + return best_n diff --git a/src/util/results.py b/src/util/results.py index 7c25bec..a889e6d 100644 --- a/src/util/results.py +++ b/src/util/results.py @@ -5,7 +5,8 @@ import numpy as np class PolylingualClassificationResults: def __init__(self, file, autoflush=True, verbose=False): self.file = file - self.columns = ['id', 'method', 'learner', 'embed', 'embed_type', 'optimp', 'dataset', 'time', 'lang', 'macrof1', 'microf1', 'macrok', 'microk', 'notes'] + self.columns = ['method', 'learner', 'embed', 'embed_type', 'pca_s', 'pca_u', 'optimp', 'dataset', 'time', + 'lang', 'macrof1', 'microf1', 'macrok', 'microk', 'notes'] self.autoflush = autoflush self.verbose = verbose if os.path.exists(file): @@ -20,8 +21,8 @@ class PolylingualClassificationResults: def already_calculated(self, id): return (self.df['id'] == id).any() - def add_row(self, id, method, learner, embed, embed_type, optimp, dataset, time, lang, macrof1, microf1, macrok=np.nan, microk=np.nan, notes=''): - s = pd.Series([id, method, learner, embed, embed_type, optimp, dataset, time, lang, macrof1, microf1, macrok, microk, notes], index=self.columns) + def add_row(self, method, learner, embed, embed_type, pca_s, pca_u, optimp, dataset, time, lang, macrof1, microf1, macrok=np.nan, microk=np.nan, notes=''): + s = pd.Series([method, learner, embed, embed_type, pca_s, pca_u, optimp, dataset, time, lang, macrof1, microf1, macrok, microk, notes], index=self.columns) self.df = self.df.append(s, ignore_index=True) if self.autoflush: self.flush() self.tell(s.to_string()) diff --git a/src/util/util.py b/src/util/util.py index 0a3da19..823c82d 100644 --- a/src/util/util.py +++ b/src/util/util.py @@ -1,3 +1,4 @@ +from sklearn.svm import SVC from tqdm import tqdm import re import sys @@ -8,4 +9,21 @@ def mask_numbers(data, number_mask='numbermask'): masked = [] for text in tqdm(data, desc='masking numbers'): masked.append(mask.sub(number_mask, text)) - return masked \ No newline at end of file + return masked + + +def fill_missing_classes(lXtr, lytr): + pass + + +def get_learner(calibrate=False, kernel='linear'): + return SVC(kernel=kernel, probability=calibrate, cache_size=1000, C=op.set_c, random_state=1, class_weight='balanced', gamma='auto') + + +def get_params(dense=False): + if not op.optimc: + return None + c_range = [1e4, 1e3, 1e2, 1e1, 1, 1e-1] + kernel = 'rbf' if dense else 'linear' + return [{'kernel': [kernel], 'C': c_range, 'gamma':['auto']}] +