get_optimal_supervised_components method - to be polished
This commit is contained in:
parent
4de6b3e250
commit
f074fd97f9
|
|
@ -103,8 +103,8 @@ if __name__ == '__main__':
|
|||
_config_id = 'M_and_F'
|
||||
|
||||
##### TODO - config dict is redundant - we have already op argparse ...
|
||||
config['reduction'] = 'tSVD'
|
||||
config['max_label_space'] = 50
|
||||
config['reduction'] = 'PCA'
|
||||
config['max_label_space'] = 'optimal'
|
||||
|
||||
result_id = dataset_file + 'PolyEmbedd_andrea_' + _config_id + ('_optimC' if op.optimc else '')
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@ from torchtext.vocab import Vectors
|
|||
import torch
|
||||
from abc import ABC, abstractmethod
|
||||
from data.supervised import get_supervised_embeddings
|
||||
from sklearn.decomposition import PCA
|
||||
|
||||
|
||||
class PretrainedEmbeddings(ABC):
|
||||
|
|
@ -244,10 +243,16 @@ class StorageEmbeddings:
|
|||
return
|
||||
|
||||
def _add_emebeddings_supervised(self, docs, labels, reduction, max_label_space):
|
||||
_optimal = dict()
|
||||
# TODO testing optimal max_label_space
|
||||
if max_label_space == 'optimal':
|
||||
print('Computing optimal number of PCA components ...')
|
||||
optimal_n = self.get_optimal_supervised_components(docs, labels)
|
||||
max_label_space = optimal_n
|
||||
|
||||
for lang in docs.keys():
|
||||
print(f'# [supervised-matrix] for {lang}')
|
||||
# should also pass max_label_space and reduction techniques
|
||||
self.lang_S[lang] = get_supervised_embeddings(docs[lang], labels[lang], reduction, max_label_space)
|
||||
self.lang_S[lang] = get_supervised_embeddings(docs[lang], labels[lang], reduction, max_label_space, lang)
|
||||
print(f'[embedding matrix done] of shape={self.lang_S[lang].shape}\n')
|
||||
return
|
||||
|
||||
|
|
@ -277,22 +282,19 @@ class StorageEmbeddings:
|
|||
_r[lang] = docs[lang].dot(self.lang_U[lang])
|
||||
return _r
|
||||
|
||||
def get_optimal_supervised_components(self, docs, labels):
|
||||
_idx = []
|
||||
for lang in docs.keys():
|
||||
_r = get_supervised_embeddings(docs[lang], labels[lang], reduction='PCA', max_label_space='optimal').tolist()
|
||||
|
||||
# def embedding_matrix(type, path, voc, lang):
|
||||
# vocabulary = np.asarray(list(zip(*sorted(voc.items(), key=lambda x: x[1])))[0])
|
||||
#
|
||||
# print('[embedding matrix]')
|
||||
# print(f'# [pretrained-matrix: {type} {lang}]')
|
||||
# pretrained = EmbeddingsAligned(type, path, lang)
|
||||
# P = pretrained.extract(vocabulary).numpy()
|
||||
# del pretrained
|
||||
# print(f'[embedding matrix done] of shape={P.shape}\n')
|
||||
#
|
||||
# return vocabulary, P
|
||||
|
||||
|
||||
def WCE_matrix(Xtr, Ytr, lang, reduction=None, n_components=50):
|
||||
print('\n# [supervised-matrix]')
|
||||
S = get_supervised_embeddings(Xtr[lang], Ytr[lang])
|
||||
print(f'[embedding matrix done] of shape={S.shape}\n')
|
||||
return S
|
||||
for i in range(len(_r)-1, 1, -1):
|
||||
# todo: if n_components (therfore #n labels) is not big enough every value will be smaller than the next one ...
|
||||
ratio = _r[i]
|
||||
next_ratio = _r[i-1]
|
||||
delta = _r[i] - _r[i-1]
|
||||
if delta > 0:
|
||||
# if ratio < next_ratio:
|
||||
_idx.append(i)
|
||||
break
|
||||
best_n = int(sum(_idx)/len(_idx))
|
||||
return best_n
|
||||
|
|
|
|||
|
|
@ -40,8 +40,12 @@ def supervised_embeddings_tsr(X,Y, tsr_function=information_gain, max_documents=
|
|||
return F
|
||||
|
||||
|
||||
def get_supervised_embeddings(X, Y, reduction, max_label_space=300, binary_structural_problems=-1, method='dotn', dozscore=True):
|
||||
print('computing supervised embeddings...')
|
||||
def get_supervised_embeddings(X, Y, reduction, max_label_space=300, lang='None', binary_structural_problems=-1, method='dotn', dozscore=True):
|
||||
if max_label_space == 'optimal':
|
||||
max_label_space = 0
|
||||
|
||||
if max_label_space != 0:
|
||||
print('computing supervised embeddings...')
|
||||
|
||||
nC = Y.shape[1]
|
||||
if nC==2 and binary_structural_problems > nC:
|
||||
|
|
@ -60,21 +64,40 @@ def get_supervised_embeddings(X, Y, reduction, max_label_space=300, binary_struc
|
|||
F = zscores(F, axis=0)
|
||||
|
||||
if nC > max_label_space:
|
||||
# TODO testing optimal max_label_space
|
||||
if reduction == 'PCA':
|
||||
if max_label_space == 0:
|
||||
pca = PCA(n_components=Y.shape[1])
|
||||
pca = pca.fit(F)
|
||||
return pca.explained_variance_ratio_
|
||||
|
||||
print(f'supervised matrix has more dimensions ({nC}) than the allowed limit {max_label_space}. '
|
||||
f'Applying PCA(n_components={max_label_space})')
|
||||
pca = PCA(n_components=max_label_space)
|
||||
F = pca.fit(F).transform(F)
|
||||
pca = pca.fit(F)
|
||||
|
||||
########################################################
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.figure()
|
||||
plt.plot(np.cumsum(pca.explained_variance_ratio_))
|
||||
plt.xlabel('Number of Components')
|
||||
plt.ylabel('Variance (%)') #
|
||||
plt.title(f'WCE Explained Variance {lang}')
|
||||
plt.show()
|
||||
########################################################
|
||||
|
||||
F = pca.fit_transform(F)
|
||||
elif reduction == 'TSNE':
|
||||
print(f'supervised matrix has more dimensions ({nC}) than the allowed limit {max_label_space}. '
|
||||
f'Applying t-SNE(n_components={max_label_space})')
|
||||
tsne = TSNE(n_components=max_label_space)
|
||||
F = tsne.fit(F).fit_transform(F)
|
||||
F = tsne.fit_transform(F)
|
||||
elif reduction == 'tSVD':
|
||||
print(f'supervised matrix has more dimensions ({nC}) than the allowed limit {max_label_space}. '
|
||||
f'Applying truncatedSVD(n_components={max_label_space})')
|
||||
tSVD = TruncatedSVD(n_components=max_label_space)
|
||||
F = tSVD.fit(F).fit_transform(F)
|
||||
F = tSVD.fit_transform(F)
|
||||
|
||||
return F
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
import numpy as np
|
||||
import time
|
||||
from data.embeddings import WordEmbeddings, WCE_matrix, StorageEmbeddings
|
||||
from data.embeddings import WordEmbeddings, StorageEmbeddings
|
||||
from scipy.sparse import issparse
|
||||
from sklearn.multiclass import OneVsRestClassifier
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
|
|
@ -493,43 +493,6 @@ class AndreaCLF(FunnellingPolylingualClassifier):
|
|||
|
||||
return lZ, lYtr
|
||||
|
||||
# def embed(self, lX, ly, unsupervised=False, supervised=False, prediction=False):
|
||||
# """
|
||||
# build embedding matrix for given language and returns its weighted sum wrt tf-idf score
|
||||
# """
|
||||
# _r = dict()
|
||||
# languages = list(lX.keys())
|
||||
#
|
||||
# if prediction:
|
||||
# for lang in languages:
|
||||
# if unsupervised: # If unsupervised embeddings ...
|
||||
# M = self.word_embeddings[lang]
|
||||
# if supervised: # and also unsupervised --> get both (M) and (S) weighted sum matrices and hstack them
|
||||
# S = self.supervised_embeddings[lang]
|
||||
# _r[lang] = np.hstack((lX[lang].dot(M), lX[lang].dot(S)))
|
||||
# continue
|
||||
# _r[lang] = lX[lang].dot(M) # if not supervised --> just get weighted sum of unsupervised (M) embeddings
|
||||
# else: # If not unsupervised --> get (S) matrix and its weighted sum
|
||||
# S = self.supervised_embeddings[lang]
|
||||
# _r[lang] = lX[lang].dot(S)
|
||||
# return _r
|
||||
#
|
||||
# if unsupervised:
|
||||
# for lang in languages:
|
||||
# _, M = embedding_matrix(self.config['we_type'], self.we_path, self.lang_word2idx[lang], lang)
|
||||
# self.word_embeddings[lang] = M
|
||||
# _r[lang] = lX[lang].dot(M)
|
||||
#
|
||||
# if supervised:
|
||||
# for lang in languages:
|
||||
# S = WCE_matrix(lX, ly, lang)
|
||||
# self.supervised_embeddings[lang] = S
|
||||
# if unsupervised:
|
||||
# _r[lang] = np.hstack((_r[lang], lX[lang].dot(S)))
|
||||
# else:
|
||||
# _r[lang] = lX[lang].dot(S)
|
||||
# return _r
|
||||
|
||||
# @override std class method
|
||||
def fit(self, lX, ly):
|
||||
tinit = time.time()
|
||||
|
|
|
|||
Loading…
Reference in New Issue