added col 'emebed_type' in csv results
This commit is contained in:
parent
f2083bf22a
commit
fedc83f84e
|
|
@ -122,6 +122,6 @@ if __name__ == '__main__':
|
|||
macrof1, microf1, macrok, microk = l_eval[lang]
|
||||
metrics.append([macrof1, microf1, macrok, microk])
|
||||
print('Lang %s: macro-F1=%.3f micro-F1=%.3f' % (lang, macrof1, microf1))
|
||||
results.add_row(result_id, 'PolyEmbed_andrea', 'svm', _config_id, op.optimc, op.dataset.split('/')[-1],
|
||||
results.add_row(result_id, 'PolyEmbed_andrea', 'svm', _config_id, config['we_type'], op.optimc, op.dataset.split('/')[-1],
|
||||
'not_binary', 'not_ablation', classifier.time, lang, macrof1, microf1, macrok, microk, '')
|
||||
print('Averages: MF1, mF1, MK, mK', np.mean(np.array(metrics), axis=0))
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ import numpy as np
|
|||
class PolylingualClassificationResults:
|
||||
def __init__(self, file, autoflush=True, verbose=False):
|
||||
self.file = file
|
||||
self.columns = ['id', 'method', 'learner', 'embed', 'optimp', 'dataset', 'binary', 'languages', 'time', 'lang', 'macrof1', 'microf1', 'macrok', 'microk', 'notes']
|
||||
self.columns = ['id', 'method', 'learner', 'embed', 'embed_type', 'optimp', 'dataset', 'binary', 'languages', 'time', 'lang', 'macrof1', 'microf1', 'macrok', 'microk', 'notes']
|
||||
self.autoflush = autoflush
|
||||
self.verbose = verbose
|
||||
if os.path.exists(file):
|
||||
|
|
@ -20,8 +20,8 @@ class PolylingualClassificationResults:
|
|||
def already_calculated(self, id):
|
||||
return (self.df['id'] == id).any()
|
||||
|
||||
def add_row(self, id, method, learner, embed, optimp, dataset, binary, ablation_lang, time, lang, macrof1, microf1, macrok=np.nan, microk=np.nan, notes=''):
|
||||
s = pd.Series([id, method, learner, embed, optimp, dataset, binary, ablation_lang, time, lang, macrof1, microf1, macrok, microk, notes], index=self.columns)
|
||||
def add_row(self, id, method, learner, embed, embed_type, optimp, dataset, binary, ablation_lang, time, lang, macrof1, microf1, macrok=np.nan, microk=np.nan, notes=''):
|
||||
s = pd.Series([id, method, learner, embed, embed_type, optimp, dataset, binary, ablation_lang, time, lang, macrof1, microf1, macrok, microk, notes], index=self.columns)
|
||||
self.df = self.df.append(s, ignore_index=True)
|
||||
if self.autoflush: self.flush()
|
||||
self.tell(s.to_string())
|
||||
|
|
|
|||
Loading…
Reference in New Issue