#!/usr/bin/env bash dataset=/home/moreo/CLESA/jrc_acquis/jrc_doclist_1958-2005vs2006_all_top300_noparallel_processed_run0.pickle logfile=./results/final_combinations_jrc.csv #A.2: ensembling feature sets (combinations of posteriors, wce, muse): # - exploring different ways of putting different feature sets together: concatenation, FeatureSetToPosteriors, averaging, voting, etc... # (no one seems to improve over standard funnelling [the improved version after A.1] with posteriors probabilities...) # aggregation=concatenation #python main_gFun.py $dataset -o $logfile -P -U -r -z --l2 #python main_gFun.py $dataset -o $logfile -P -S -r -z --l2 #python main_gFun.py $dataset -o $logfile -U -S -r -z --l2 #python main_gFun.py $dataset -o $logfile -P -U -S -r -z --l2 # ##FeatureSetToPosteriors (aggregation mean) python main_multimodal_cls.py $dataset -o $logfile -P -U -r -a -z --l2 --allprob python main_multimodal_cls.py $dataset -o $logfile -P -S -r -a -z --l2 --allprob python main_multimodal_cls.py $dataset -o $logfile -U -S -r -a -z --l2 --allprob python main_multimodal_cls.py $dataset -o $logfile -P -U -S -r -a -z --l2 --allprob ##FeatureSetToPosteriors #python main_gFun.py $dataset -o $logfile -P -U -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -S -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -U -S -r -z --l2 --allprob #python main_gFun.py $dataset -o $logfile -P -U -S -r -z --l2 --allprob #MajorityVoting #python main_majorityvoting_cls.py $dataset -o $logfile -P -U -r #python main_majorityvoting_cls.py $dataset -o $logfile -P -S -r #python main_majorityvoting_cls.py $dataset -o $logfile -U -S -r #python main_majorityvoting_cls.py $dataset -o $logfile -P -U -S -r