``` usage: main.py [-h] [-o CSV_DIR] [-x] [-w] [-m] [-b] [-g] [-c] [-n NEPOCHS] [-j N_JOBS] [--muse_dir MUSE_DIR] [--gru_wce] [--gru_dir GRU_DIR] [--bert_dir BERT_DIR] [--gpus GPUS] dataset Run generalized funnelling, A. Moreo, A. Pedrotti and F. Sebastiani (2020). positional arguments: dataset Path to the dataset optional arguments: -h, --help show this help message and exit -o, --output Result file (default ../csv_logs/gfun/gfun_results.csv) -x, --post_embedder deploy posterior probabilities embedder to compute document embeddings -w, --wce_embedder deploy (supervised) Word-Class embedder to the compute document embeddings -m, --muse_embedder deploy (pretrained) MUSE embedder to compute document embeddings -b, --bert_embedder deploy multilingual Bert to compute document embeddings -g, --gru_embedder deploy a GRU in order to compute document embeddings -c, --c_optimize Optimize SVMs C hyperparameter -n, --nepochs Number of max epochs to train Recurrent embedder (i.e., -g) -j, --n_jobs Number of parallel jobs (default is -1, all) --muse_dir MUSE_DIR Path to the MUSE polylingual word embeddings (default ../embeddings) --gru_wce Deploy WCE embedding as embedding layer of the GRU View Generator --gru_dir GRU_DIR Set the path to a pretrained GRU model (i.e., -g view generator) --bert_dir BERT_DIR Set the path to a pretrained mBERT model (i.e., -b view generator) --gpus GPUS specifies how many GPUs to use per node ```