gFun/src/learning/transformers.py

845 lines
34 KiB
Python

from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader
from data.tsr_function__ import get_tsr_matrix, get_supervised_matrix, pointwise_mutual_information, information_gain
from embeddings.embeddings import FastTextMUSE
from embeddings.supervised import supervised_embeddings_tfidf, zscores
from learning.learners import NaivePolylingualClassifier, MonolingualClassifier, _joblib_transform_multiling
from sklearn.decomposition import PCA
from scipy.sparse import hstack
from util_transformers.StandardizeTransformer import StandardizeTransformer
from util.SIF_embed import remove_pc
from sklearn.preprocessing import normalize
from scipy.sparse import csr_matrix
from models.mBert import *
from models.lstm_class import *
from util.csv_log import CSVLog
from util.file import get_file_name
from util.early_stop import EarlyStopping
from util.common import *
import time
# ------------------------------------------------------------------
# Data Processing
# ------------------------------------------------------------------
class FeatureWeight:
def __init__(self, weight='tfidf', agg='mean'):
assert weight in ['tfidf', 'pmi', 'ig'] or callable(
weight), 'weight should either be "tfidf" or a callable function'
assert agg in ['mean', 'max'], 'aggregation function should either be "mean" or "max"'
self.weight = weight
self.agg = agg
self.fitted = False
if weight == 'pmi':
self.weight = pointwise_mutual_information
elif weight == 'ig':
self.weight = information_gain
def fit(self, lX, ly):
if not self.fitted:
if self.weight == 'tfidf':
self.lF = {l: np.ones(X.shape[1]) for l, X in lX.items()}
else:
self.lF = {}
for l in lX.keys():
X, y = lX[l], ly[l]
print(f'getting supervised cell-matrix lang {l}')
tsr_matrix = get_tsr_matrix(get_supervised_matrix(X, y), tsr_score_funtion=self.weight)
if self.agg == 'max':
F = tsr_matrix.max(axis=0)
elif self.agg == 'mean':
F = tsr_matrix.mean(axis=0)
self.lF[l] = F
self.fitted = True
return self
def transform(self, lX):
return {lang: csr_matrix.multiply(lX[lang], self.lF[lang]) for lang in lX.keys()}
def fit_transform(self, lX, ly):
return self.fit(lX, ly).transform(lX)
# ------------------------------------------------------------------
# View Generators (aka first-tier learners)
# ------------------------------------------------------------------
class PosteriorProbabilitiesEmbedder:
def __init__(self, first_tier_learner, first_tier_parameters=None, l2=True, n_jobs=-1):
self.fist_tier_learner = first_tier_learner
self.fist_tier_parameters = first_tier_parameters
self.l2 = l2
self.n_jobs = n_jobs
self.doc_projector = NaivePolylingualClassifier(
self.fist_tier_learner, self.fist_tier_parameters, n_jobs=n_jobs
)
self.requires_tfidf = True
def fit(self, lX, lY, lV=None, called_by_viewgen=False):
if not called_by_viewgen:
# Avoid printing if method is called by another View Gen (e.g., GRU ViewGen)
print('### Posterior Probabilities View Generator (X)')
print('fitting the projectors... {}'.format(lX.keys()))
self.doc_projector.fit(lX, lY)
return self
def transform(self, lX):
lZ = self.predict_proba(lX)
lZ = _normalize(lZ, self.l2)
return lZ
def fit_transform(self, lX, ly=None, lV=None):
return self.fit(lX, ly).transform(lX)
def best_params(self):
return self.doc_projector.best_params()
def predict(self, lX, ly=None):
return self.doc_projector.predict(lX)
def predict_proba(self, lX, ly=None):
print(f'generating posterior probabilities for {sum([X.shape[0] for X in lX.values()])} documents')
return self.doc_projector.predict_proba(lX)
def _get_output_dim(self):
return len(self.doc_projector.model['da'].model.classes_)
class MuseEmbedder:
def __init__(self, path, lV=None, l2=True, n_jobs=-1, featureweight=FeatureWeight(), sif=False):
self.path = path
self.lV = lV
self.l2 = l2
self.n_jobs = n_jobs
self.featureweight = featureweight
self.sif = sif
self.requires_tfidf = True
def fit(self, lX, ly, lV=None):
assert lV is not None or self.lV is not None, 'lV not specified'
print('### MUSE View Generator (M)')
print(f'Loading fastText pretrained vectors for languages {list(lX.keys())}...')
self.langs = sorted(lX.keys())
self.MUSE = load_muse_embeddings(self.path, self.langs, self.n_jobs)
lWordList = {l: self._get_wordlist_from_word2index(lV[l]) for l in self.langs}
self.MUSE = {l: Muse.extract(lWordList[l]).numpy() for l, Muse in self.MUSE.items()}
self.featureweight.fit(lX, ly)
return self
def transform(self, lX):
MUSE = self.MUSE
lX = self.featureweight.transform(lX)
XdotMUSE = Parallel(n_jobs=self.n_jobs)(
delayed(XdotM)(lX[lang], MUSE[lang], self.sif) for lang in self.langs
)
lMuse = {l: XdotMUSE[i] for i, l in enumerate(self.langs)}
lMuse = _normalize(lMuse, self.l2)
return lMuse
def fit_transform(self, lX, ly, lV):
return self.fit(lX, ly, lV).transform(lX)
def _get_wordlist_from_word2index(self, word2index):
return list(zip(*sorted(word2index.items(), key=lambda x: x[1])))[0]
def _get_output_dim(self):
return self.MUSE['da'].shape[1]
class WordClassEmbedder:
def __init__(self, l2=True, n_jobs=-1, max_label_space=300, featureweight=FeatureWeight(), sif=False):
self.n_jobs = n_jobs
self.l2 = l2
self.max_label_space = max_label_space
self.featureweight = featureweight
self.sif = sif
self.requires_tfidf = True
def fit(self, lX, ly, lV=None):
print('### WCE View Generator (M)')
print('Computing supervised embeddings...')
self.langs = sorted(lX.keys())
WCE = Parallel(n_jobs=self.n_jobs)(
delayed(word_class_embedding_matrix)(lX[lang], ly[lang], self.max_label_space) for lang in self.langs
)
self.lWCE = {l: WCE[i] for i, l in enumerate(self.langs)}
self.featureweight.fit(lX, ly)
return self
def transform(self, lX):
lWCE = self.lWCE
lX = self.featureweight.transform(lX)
XdotWCE = Parallel(n_jobs=self.n_jobs)(
delayed(XdotM)(lX[lang], lWCE[lang], self.sif) for lang in self.langs
)
lwce = {l: XdotWCE[i] for i, l in enumerate(self.langs)}
lwce = _normalize(lwce, self.l2)
return lwce
def fit_transform(self, lX, ly, lV=None):
return self.fit(lX, ly).transform(lX)
def _get_output_dim(self):
return 73 # TODO !
class MBertEmbedder:
def __init__(self, doc_embed_path=None, patience=10, checkpoint_dir='../hug_checkpoint/', path_to_model=None,
nC=None):
self.doc_embed_path = doc_embed_path
self.patience = patience
self.checkpoint_dir = checkpoint_dir
self.fitted = False
self.requires_tfidf = False
if path_to_model is None and nC is not None:
self.model = None
else:
config = BertConfig.from_pretrained('bert-base-multilingual-cased', output_hidden_states=True,
num_labels=nC)
self.model = BertForSequenceClassification.from_pretrained(path_to_model, config=config).cuda()
self.fitted = True
def fit(self, lX, ly, lV=None, seed=0, nepochs=200, lr=1e-5, val_epochs=1):
print('### mBERT View Generator (B)')
if self.fitted is True:
print('Bert model already fitted!')
return self
print('Fine-tune mBert on the given dataset.')
l_tokenized_tr = do_tokenization(lX, max_len=512)
l_split_tr, l_split_tr_target, l_split_va, l_split_val_target = get_tr_val_split(l_tokenized_tr, ly,
val_prop=0.2, max_val=2000,
seed=seed) # TODO: seed
tr_dataset = TrainingDataset(l_split_tr, l_split_tr_target)
va_dataset = TrainingDataset(l_split_va, l_split_val_target)
tr_dataloader = DataLoader(tr_dataset, batch_size=4, shuffle=True)
va_dataloader = DataLoader(va_dataset, batch_size=2, shuffle=True)
nC = tr_dataset.get_nclasses()
model = get_model(nC)
model = model.cuda()
criterion = torch.nn.BCEWithLogitsLoss().cuda()
optim = init_optimizer(model, lr=lr, weight_decay=0.01)
lr_scheduler = StepLR(optim, step_size=25, gamma=0.1)
early_stop = EarlyStopping(model, optimizer=optim, patience=self.patience,
checkpoint=self.checkpoint_dir,
is_bert=True)
# Training loop
logfile = '../log/log_mBert_extractor.csv'
method_name = 'mBert_feature_extractor'
tinit = time()
lang_ids = va_dataset.lang_ids
for epoch in range(1, nepochs + 1):
print('# Start Training ...')
train(model, tr_dataloader, epoch, criterion, optim, method_name, tinit, logfile)
lr_scheduler.step() # reduces the learning rate # TODO arg epoch?
# Validation
macrof1 = test(model, va_dataloader, lang_ids, tinit, epoch, logfile, criterion, 'va')
early_stop(macrof1, epoch)
if early_stop.STOP:
print('[early-stop] STOP')
break
model = early_stop.restore_checkpoint()
self.model = model.cuda()
if val_epochs > 0:
print(f'running last {val_epochs} training epochs on the validation set')
for val_epoch in range(1, val_epochs + 1):
train(self.model, va_dataloader, epoch + val_epoch, criterion, optim, method_name, tinit, logfile)
self.fitted = True
return self
def transform(self, lX):
assert self.fitted is True, 'Calling transform without any initialized model! - call init first or on init' \
'pass the "path_to_model" arg.'
print('Obtaining document embeddings from pretrained mBert ')
l_tokenized_X = do_tokenization(lX, max_len=512, verbose=True)
feat_dataset = ExtractorDataset(l_tokenized_X)
feat_lang_ids = feat_dataset.lang_ids
dataloader = DataLoader(feat_dataset, batch_size=64)
all_batch_embeddings, id2lang = feature_extractor(dataloader, feat_lang_ids, self.model)
return all_batch_embeddings
def fit_transform(self, lX, ly, lV=None):
return self.fit(lX, ly).transform(lX)
class RecurrentEmbedder:
def __init__(self, pretrained, supervised, multilingual_dataset, options, concat=False, lr=1e-3,
we_path='../embeddings', hidden_size=512, sup_drop=0.5, posteriors=False, patience=10,
test_each=0, checkpoint_dir='../checkpoint', model_path=None):
self.pretrained = pretrained
self.supervised = supervised
self.concat = concat
self.requires_tfidf = False
self.multilingual_dataset = multilingual_dataset
self.model = None
self.we_path = we_path
self.langs = multilingual_dataset.langs()
self.hidden_size = hidden_size
self.sup_drop = sup_drop
self.posteriors = posteriors
self.patience = patience
self.checkpoint_dir = checkpoint_dir
self.test_each = test_each
self.options = options
self.seed = options.seed
self.is_trained = False
## INIT MODEL for training
self.lXtr, self.lytr = self.multilingual_dataset.training(target_as_csr=True)
self.lXte, self.lyte = self.multilingual_dataset.test(target_as_csr=True)
self.nC = self.lyte[self.langs[0]].shape[1]
lpretrained, lpretrained_vocabulary = self._load_pretrained_embeddings(self.we_path, self.langs)
self.multilingual_index = MultilingualIndex()
self.multilingual_index.index(self.lXtr, self.lytr, self.lXte, lpretrained_vocabulary)
self.multilingual_index.train_val_split(val_prop=0.2, max_val=2000, seed=self.seed)
self.multilingual_index.embedding_matrices(lpretrained, self.supervised)
if model_path is not None:
self.is_trained = True
self.model = torch.load(model_path)
else:
self.model = self._init_Net()
self.optim = init_optimizer(self.model, lr=lr)
self.criterion = torch.nn.BCEWithLogitsLoss().cuda()
self.lr_scheduler = StepLR(self.optim, step_size=25, gamma=0.5)
self.early_stop = EarlyStopping(self.model, optimizer=self.optim, patience=self.patience,
checkpoint=f'{self.checkpoint_dir}/gru_viewgen_-{get_file_name(self.options.dataset)}')
# Init SVM in order to recast (vstacked) document embeddings to vectors of Posterior Probabilities
self.posteriorEmbedder = MetaClassifier(
SVC(kernel='rbf', gamma='auto', probability=True, cache_size=1000, random_state=1), n_jobs=options.n_jobs)
def fit(self, lX, ly, lV=None, batch_size=64, nepochs=2, val_epochs=1):
print('### Gated Recurrent Unit View Generator (G)')
# could be better to init model here at first .fit() call!
if self.model is None:
print('TODO: Init model!')
if not self.is_trained:
# Batchify input
self.multilingual_index.train_val_split(val_prop=0.2, max_val=2000, seed=self.seed)
l_train_index, l_train_target = self.multilingual_index.l_train()
l_val_index, l_val_target = self.multilingual_index.l_val()
l_test_index = self.multilingual_index.l_test_index()
batcher_train = BatchGRU(batch_size, batches_per_epoch=batch_size, languages=self.langs,
lpad=self.multilingual_index.l_pad())
batcher_eval = BatchGRU(batch_size, batches_per_epoch=batch_size, languages=self.langs,
lpad=self.multilingual_index.l_pad())
# Train loop
print('Start training')
method_name = 'gru_view_generator'
logfile = init_logfile_nn(method_name, self.options)
tinit = time.time()
for epoch in range(1, nepochs + 1):
train_gru(model=self.model, batcher=batcher_train, ltrain_index=l_train_index, lytr=l_train_target,
tinit=tinit, logfile=logfile, criterion=self.criterion, optim=self.optim,
epoch=epoch, method_name=method_name, opt=self.options, ltrain_posteriors=None,
ltrain_bert=None)
self.lr_scheduler.step() # reduces the learning rate # TODO arg epoch?
# validation step
macrof1 = test_gru(self.model, batcher_eval, l_val_index, None, None, l_val_target, tinit, epoch,
logfile, self.criterion, 'va')
self.early_stop(macrof1, epoch)
if self.test_each > 0:
test_gru(self.model, batcher_eval, l_test_index, None, None, self.lyte, tinit, epoch,
logfile, self.criterion, 'te')
if self.early_stop.STOP:
print('[early-stop] STOP')
print('Restoring best model...')
break
self.model = self.early_stop.restore_checkpoint()
print(f'running last {val_epochs} training epochs on the validation set')
for val_epoch in range(1, val_epochs+1):
batcher_train.init_offset()
train_gru(model=self.model, batcher=batcher_train, ltrain_index=l_train_index, lytr=l_train_target,
tinit=tinit, logfile=logfile, criterion=self.criterion, optim=self.optim,
epoch=epoch, method_name=method_name, opt=self.options, ltrain_posteriors=None,
ltrain_bert=None)
self.is_trained = True
# Generate document embeddings in order to fit an SVM to recast them as vector for Posterior Probabilities
lX = self._get_doc_embeddings(lX)
# Fit a ''multi-lingual'' SVM on the generated doc embeddings
self.posteriorEmbedder.fit(lX, ly)
return self
def transform(self, lX, batch_size=64):
lX = self._get_doc_embeddings(lX)
return self.posteriorEmbedder.predict_proba(lX)
def fit_transform(self, lX, ly, lV=None):
# TODO
return 0
def _get_doc_embeddings(self, lX, batch_size=64):
assert self.is_trained, 'Model is not trained, cannot call transform before fitting the model!'
print('Generating document embeddings via GRU')
data = {}
for lang in lX.keys():
indexed = index(data=lX[lang],
vocab=self.multilingual_index.l_index[lang].word2index,
known_words=set(self.multilingual_index.l_index[lang].word2index.keys()),
analyzer=self.multilingual_index.l_vectorizer.get_analyzer(lang),
unk_index=self.multilingual_index.l_index[lang].unk_index,
out_of_vocabulary=self.multilingual_index.l_index[lang].out_of_vocabulary)
data[lang] = indexed
lX = {}
ly = {}
batcher_transform = BatchGRU(batch_size, batches_per_epoch=batch_size, languages=self.langs,
lpad=self.multilingual_index.l_pad())
l_devel_index = self.multilingual_index.l_devel_index()
l_devel_target = self.multilingual_index.l_devel_target()
# l_devel_target = {k: v[:len(data[lang])] for k, v in l_devel_target.items()}
# for idx, (batch, post, bert_emb, target, lang) in enumerate(
# batcher_transform.batchify(l_devel_index, None, None, l_devel_target)):
for idx, (batch, post, bert_emb, target, lang) in enumerate(
batcher_transform.batchify(data, None, None, l_devel_target)):
if lang not in lX.keys():
lX[lang] = self.model.get_embeddings(batch, lang)
ly[lang] = target.cpu().detach().numpy()
else:
lX[lang] = np.concatenate((lX[lang], self.model.get_embeddings(batch, lang)), axis=0)
ly[lang] = np.concatenate((ly[lang], target.cpu().detach().numpy()), axis=0)
return lX
# loads the MUSE embeddings if requested, or returns empty dictionaries otherwise
def _load_pretrained_embeddings(self, we_path, langs):
lpretrained = lpretrained_vocabulary = self._none_dict(langs) # TODO ?
lpretrained = load_muse_embeddings(we_path, langs, n_jobs=-1)
lpretrained_vocabulary = {l: lpretrained[l].vocabulary() for l in langs}
return lpretrained, lpretrained_vocabulary
def _none_dict(self, langs):
return {l:None for l in langs}
# instantiates the net, initializes the model parameters, and sets embeddings trainable if requested
def _init_Net(self, xavier_uniform=True):
model = RNNMultilingualClassifier(
output_size=self.nC,
hidden_size=self.hidden_size,
lvocab_size=self.multilingual_index.l_vocabsize(),
learnable_length=0,
lpretrained=self.multilingual_index.l_embeddings(),
drop_embedding_range=self.multilingual_index.sup_range,
drop_embedding_prop=self.sup_drop,
post_probabilities=self.posteriors
)
return model.cuda()
class DocEmbedderList:
def __init__(self, *embedder_list, aggregation='concat'):
assert aggregation in {'concat', 'mean'}, 'unknown aggregation mode, valid are "concat" and "mean"'
if len(embedder_list) == 0:
embedder_list = []
self.embedders = embedder_list
self.aggregation = aggregation
print(f'Aggregation mode: {self.aggregation}')
def fit(self, lX, ly, lV=None, tfidf=None):
for transformer in self.embedders:
_lX = lX
if transformer.requires_tfidf:
_lX = tfidf
transformer.fit(_lX, ly, lV)
return self
def transform(self, lX, tfidf=None):
if self.aggregation == 'concat':
return self.transform_concat(lX, tfidf)
elif self.aggregation == 'mean':
return self.transform_mean(lX, tfidf)
def transform_concat(self, lX, tfidf):
if len(self.embedders) == 1:
if self.embedders[0].requires_tfidf:
lX = tfidf
return self.embedders[0].transform(lX)
some_sparse = False
langs = sorted(lX.keys())
lZparts = {l: [] for l in langs}
for transformer in self.embedders:
_lX = lX
if transformer.requires_tfidf:
_lX = tfidf
lZ = transformer.transform(_lX)
for l in langs:
Z = lZ[l]
some_sparse = some_sparse or issparse(Z)
lZparts[l].append(Z)
hstacker = hstack if some_sparse else np.hstack
return {l: hstacker(lZparts[l]) for l in langs}
def transform_mean(self, lX, tfidf):
if len(self.embedders) == 1:
return self.embedders[0].transform(lX)
langs = sorted(lX.keys())
lZparts = {l: None for l in langs}
# min_dim = min([transformer._get_output_dim() for transformer in self.embedders])
min_dim = 73 # TODO <---- this should be the number of target classes
for transformer in self.embedders:
_lX = lX
if transformer.requires_tfidf:
_lX = tfidf
lZ = transformer.transform(_lX)
nC = min([lZ[lang].shape[1] for lang in langs])
for l in langs:
Z = lZ[l]
if Z.shape[1] > min_dim:
print(
f'Space Z matrix has more dimensions ({Z.shape[1]}) than the smallest representation {min_dim}.'
f'Applying PCA(n_components={min_dim})')
pca = PCA(n_components=min_dim)
Z = pca.fit(Z).transform(Z)
if lZparts[l] is None:
lZparts[l] = Z
else:
lZparts[l] += Z
n_transformers = len(self.embedders)
return {l: lZparts[l] / n_transformers for l in langs}
def fit_transform(self, lX, ly, lV=None, tfidf=None):
return self.fit(lX, ly, lV, tfidf).transform(lX, tfidf)
def best_params(self):
return {'todo'}
def append(self, embedder):
self.embedders.append(embedder)
class FeatureSet2Posteriors:
def __init__(self, transformer, requires_tfidf=False, l2=True, n_jobs=-1):
self.transformer = transformer
self.l2 = l2
self.n_jobs = n_jobs
self.prob_classifier = MetaClassifier(
SVC(kernel='rbf', gamma='auto', probability=True, cache_size=1000, random_state=1), n_jobs=n_jobs)
self.requires_tfidf = requires_tfidf
def fit(self, lX, ly, lV=None):
if lV is None and hasattr(self.transformer, 'lV'):
lV = self.transformer.lV
lZ = self.transformer.fit_transform(lX, ly, lV)
self.prob_classifier.fit(lZ, ly)
return self
def transform(self, lX):
lP = self.predict_proba(lX)
lP = _normalize(lP, self.l2)
return lP
def fit_transform(self, lX, ly, lV):
return self.fit(lX, ly, lV).transform(lX)
def predict(self, lX, ly=None):
lZ = self.transformer.transform(lX)
return self.prob_classifier.predict(lZ)
def predict_proba(self, lX, ly=None):
lZ = self.transformer.transform(lX)
return self.prob_classifier.predict_proba(lZ)
# ------------------------------------------------------------------
# Meta-Classifier (aka second-tier learner)
# ------------------------------------------------------------------
class MetaClassifier:
def __init__(self, meta_learner, meta_parameters=None, n_jobs=-1, standardize_range=None):
self.n_jobs = n_jobs
self.model = MonolingualClassifier(base_learner=meta_learner, parameters=meta_parameters, n_jobs=n_jobs)
self.standardize_range = standardize_range
def fit(self, lZ, ly):
tinit = time.time()
Z, y = self.stack(lZ, ly)
self.standardizer = StandardizeTransformer(range=self.standardize_range)
Z = self.standardizer.fit_transform(Z)
print('fitting the Z-space of shape={}'.format(Z.shape))
self.model.fit(Z, y)
self.time = time.time() - tinit
def stack(self, lZ, ly=None):
langs = list(lZ.keys())
Z = np.vstack([lZ[lang] for lang in langs]) # Z is the language independent space
if ly is not None:
y = np.vstack([ly[lang] for lang in langs])
return Z, y
else:
return Z
def predict(self, lZ, ly=None):
lZ = _joblib_transform_multiling(self.standardizer.transform, lZ, n_jobs=self.n_jobs)
return _joblib_transform_multiling(self.model.predict, lZ, n_jobs=self.n_jobs)
def predict_proba(self, lZ, ly=None):
lZ = _joblib_transform_multiling(self.standardizer.transform, lZ, n_jobs=self.n_jobs)
return _joblib_transform_multiling(self.model.predict_proba, lZ, n_jobs=self.n_jobs)
def best_params(self):
return self.model.best_params()
# ------------------------------------------------------------------
# Ensembling (aka Funnelling)
# ------------------------------------------------------------------
class Funnelling:
def __init__(self,
vectorizer: TfidfVectorizerMultilingual,
first_tier: DocEmbedderList,
meta: MetaClassifier):
self.vectorizer = vectorizer
self.first_tier = first_tier
self.meta = meta
self.n_jobs = meta.n_jobs
def fit(self, lX, ly):
tfidf_lX = self.vectorizer.fit_transform(lX, ly)
lV = self.vectorizer.vocabulary()
print('## Fitting first-tier learners!')
lZ = self.first_tier.fit_transform(lX, ly, lV, tfidf=tfidf_lX)
print('## Fitting meta-learner!')
self.meta.fit(lZ, ly)
def predict(self, lX, ly=None):
tfidf_lX = self.vectorizer.transform(lX)
lZ = self.first_tier.transform(lX, tfidf=tfidf_lX)
ly_ = self.meta.predict(lZ)
return ly_
def best_params(self):
return {'1st-tier': self.first_tier.best_params(),
'meta': self.meta.best_params()}
class Voting:
def __init__(self, *prob_classifiers):
assert all([hasattr(p, 'predict_proba') for p in prob_classifiers]), 'not all classifiers are probabilistic'
self.prob_classifiers = prob_classifiers
def fit(self, lX, ly, lV=None):
for classifier in self.prob_classifiers:
classifier.fit(lX, ly, lV)
def predict(self, lX, ly=None):
lP = {l: [] for l in lX.keys()}
for classifier in self.prob_classifiers:
lPi = classifier.predict_proba(lX)
for l in lX.keys():
lP[l].append(lPi[l])
lP = {l: np.stack(Plist).mean(axis=0) for l, Plist in lP.items()}
ly = {l: P > 0.5 for l, P in lP.items()}
return ly
# ------------------------------------------------------------------------------
# HELPERS
# ------------------------------------------------------------------------------
def load_muse_embeddings(we_path, langs, n_jobs=-1):
MUSE = Parallel(n_jobs=n_jobs)(
delayed(FastTextMUSE)(we_path, lang) for lang in langs
)
return {l: MUSE[i] for i, l in enumerate(langs)}
def word_class_embedding_matrix(X, Y, max_label_space=300):
WCE = supervised_embeddings_tfidf(X, Y)
WCE = zscores(WCE, axis=0)
nC = Y.shape[1]
if nC > max_label_space:
print(f'supervised matrix has more dimensions ({nC}) than the allowed limit {max_label_space}. '
f'Applying PCA(n_components={max_label_space})')
pca = PCA(n_components=max_label_space)
WCE = pca.fit(WCE).transform(WCE)
return WCE
def XdotM(X, M, sif):
E = X.dot(M)
if sif:
print("removing pc...")
E = remove_pc(E, npc=1)
return E
def _normalize(lX, l2=True):
return {l: normalize(X) for l, X in lX.items()} if l2 else lX
class BatchGRU:
def __init__(self, batchsize, batches_per_epoch, languages, lpad, max_pad_length=500):
self.batchsize = batchsize
self.batches_per_epoch = batches_per_epoch
self.languages = languages
self.lpad=lpad
self.max_pad_length=max_pad_length
self.init_offset()
def init_offset(self):
self.offset = {lang: 0 for lang in self.languages}
def batchify(self, l_index, l_post, l_bert, llabels):
langs = self.languages
l_num_samples = {l:len(l_index[l]) for l in langs}
max_samples = max(l_num_samples.values())
n_batches = max_samples // self.batchsize + 1 * (max_samples % self.batchsize > 0)
if self.batches_per_epoch != -1 and self.batches_per_epoch < n_batches:
n_batches = self.batches_per_epoch
for b in range(n_batches):
for lang in langs:
index, labels = l_index[lang], llabels[lang]
offset = self.offset[lang]
if offset >= l_num_samples[lang]:
offset = 0
limit = offset+self.batchsize
batch_slice = slice(offset, limit)
batch = index[batch_slice]
batch_labels = labels[batch_slice].toarray()
post = None
bert_emb = None
batch = pad(batch, pad_index=self.lpad[lang], max_pad_length=self.max_pad_length)
batch = torch.LongTensor(batch).cuda()
target = torch.FloatTensor(batch_labels).cuda()
self.offset[lang] = limit
yield batch, post, bert_emb, target, lang
def pad(index_list, pad_index, max_pad_length=None):
pad_length = np.max([len(index) for index in index_list])
if max_pad_length is not None:
pad_length = min(pad_length, max_pad_length)
for i,indexes in enumerate(index_list):
index_list[i] = [pad_index]*(pad_length-len(indexes)) + indexes[:pad_length]
return index_list
def train_gru(model, batcher, ltrain_index, lytr, tinit, logfile, criterion, optim, epoch, method_name, opt,
ltrain_posteriors=None, ltrain_bert=None, log_interval=10):
_dataset_path = opt.dataset.split('/')[-1].split('_')
dataset_id = _dataset_path[0] + _dataset_path[-1]
loss_history = []
model.train()
for idx, (batch, post, bert_emb, target, lang) in enumerate(batcher.batchify(ltrain_index, ltrain_posteriors, ltrain_bert, lytr)):
optim.zero_grad()
loss = criterion(model(batch, post, bert_emb, lang), target)
loss.backward()
clip_gradient(model)
optim.step()
loss_history.append(loss.item())
if idx % log_interval == 0:
interval_loss = np.mean(loss_history[-log_interval:])
print(f'{dataset_id} {method_name} Epoch: {epoch}, Step: {idx}, lr={get_lr(optim):.5f}, '
f'Training Loss: {interval_loss:.6f}')
mean_loss = np.mean(interval_loss)
logfile.add_row(epoch=epoch, measure='tr_loss', value=mean_loss, timelapse=time.time() - tinit)
return mean_loss
def test_gru(model, batcher, ltest_index, ltest_posteriors, lte_bert, lyte, tinit, epoch, logfile, criterion, measure_prefix):
loss_history = []
model.eval()
langs = sorted(ltest_index.keys())
predictions = {l: [] for l in langs}
yte_stacked = {l: [] for l in langs}
batcher.init_offset()
for batch, post, bert_emb, target, lang in tqdm(batcher.batchify(ltest_index, ltest_posteriors, lte_bert, lyte),
desc='evaluation: '):
logits = model(batch, post, bert_emb, lang)
loss = criterion(logits, target).item()
prediction = predict(logits)
predictions[lang].append(prediction)
yte_stacked[lang].append(target.detach().cpu().numpy())
loss_history.append(loss)
ly = {l:np.vstack(yte_stacked[l]) for l in langs}
ly_ = {l:np.vstack(predictions[l]) for l in langs}
l_eval = evaluate(ly, ly_)
metrics = []
for lang in langs:
macrof1, microf1, macrok, microk = l_eval[lang]
metrics.append([macrof1, microf1, macrok, microk])
if measure_prefix == 'te':
print(f'Lang {lang}: macro-F1={macrof1:.3f} micro-F1={microf1:.3f}')
Mf1, mF1, MK, mk = np.mean(np.array(metrics), axis=0)
print(f'[{measure_prefix}] Averages: MF1, mF1, MK, mK [{Mf1:.5f}, {mF1:.5f}, {MK:.5f}, {mk:.5f}]')
mean_loss = np.mean(loss_history)
logfile.add_row(epoch=epoch, measure=f'{measure_prefix}-macro-F1', value=Mf1, timelapse=time.time() - tinit)
logfile.add_row(epoch=epoch, measure=f'{measure_prefix}-micro-F1', value=mF1, timelapse=time.time() - tinit)
logfile.add_row(epoch=epoch, measure=f'{measure_prefix}-macro-K', value=MK, timelapse=time.time() - tinit)
logfile.add_row(epoch=epoch, measure=f'{measure_prefix}-micro-K', value=mk, timelapse=time.time() - tinit)
logfile.add_row(epoch=epoch, measure=f'{measure_prefix}-loss', value=mean_loss, timelapse=time.time() - tinit)
return Mf1
def clip_gradient(model, clip_value=1e-1):
params = list(filter(lambda p: p.grad is not None, model.parameters()))
for p in params:
p.grad.data.clamp_(-clip_value, clip_value)
def init_logfile_nn(method_name, opt):
logfile = CSVLog(opt.logfile_gru, ['dataset', 'method', 'epoch', 'measure', 'value', 'run', 'timelapse'])
logfile.set_default('dataset', opt.dataset)
logfile.set_default('run', opt.seed)
logfile.set_default('method', method_name)
assert opt.force or not logfile.already_calculated(), f'results for dataset {opt.dataset} method {method_name} ' \
f'and run {opt.seed} already calculated'
return logfile