gFun/refactor/models/pl_bert.py

65 lines
2.9 KiB
Python

import torch
import pytorch_lightning as pl
from torch.optim.lr_scheduler import StepLR
from transformers import BertForSequenceClassification, BertTokenizer, AdamW, BertConfig
from pytorch_lightning.metrics import F1, Accuracy, Metric
class BertModel(pl.LightningModule):
def __init__(self, output_size, stored_path):
super().__init__()
self.loss = torch.nn.BCEWithLogitsLoss()
if stored_path:
self.bert = BertForSequenceClassification.from_pretrained(stored_path,
num_labels=output_size,
output_hidden_states=True)
else:
self.bert = BertForSequenceClassification.from_pretrained('bert-base-multilingual-cased',
num_labels=output_size,
output_hidden_states=True)
self.accuracy = Accuracy()
self.save_hyperparameters()
def forward(self, X):
logits = self.bert(X)
return logits
def training_step(self, train_batch, batch_idx):
X, y, _, batch_langs = train_batch
X = torch.cat(X).view([X[0].shape[0], len(X)])
y = y.type(torch.cuda.FloatTensor)
logits, _ = self.forward(X)
loss = self.loss(logits, y)
predictions = torch.sigmoid(logits) > 0.5
accuracy = self.accuracy(predictions, y)
self.log('train-loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log('train-accuracy', accuracy, on_step=True, on_epoch=True, prog_bar=False, logger=True)
return loss
def validation_step(self, val_batch, batch_idx):
X, y, _, batch_langs = val_batch
X = torch.cat(X).view([X[0].shape[0], len(X)])
y = y.type(torch.cuda.FloatTensor)
logits, _ = self.forward(X)
loss = self.loss(logits, y)
predictions = torch.sigmoid(logits) > 0.5
accuracy = self.accuracy(predictions, y)
self.log('val-loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log('val-accuracy', accuracy, on_step=True, on_epoch=True, prog_bar=False, logger=True)
return
def configure_optimizers(self, lr=3e-5, weight_decay=0.01):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in self.bert.named_parameters()
if not any(nd in n for nd in no_decay)],
'weight_decay': weight_decay},
{'params': [p for n, p in self.bert.named_parameters()
if any(nd in n for nd in no_decay)],
'weight_decay': weight_decay}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=lr)
scheduler = StepLR(optimizer, step_size=25, gamma=0.1)
return [optimizer], [scheduler]