updates
This commit is contained in:
parent
86fbd90bd4
commit
317fb93da6
|
|
@ -1,3 +1,5 @@
|
|||
from os.path import expanduser
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoModelForSequenceClassification,
|
||||
|
|
@ -15,6 +17,9 @@ import evaluate
|
|||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
IWSLT_D_COLUMNS = ["text", "category", "rating", "summary", "title"]
|
||||
RAI_D_COLUMNS = ["id", "lang", "provider", "date", "title", "text", "str_label", "label"]
|
||||
|
||||
|
||||
def init_callbacks(patience=-1, nosave=False):
|
||||
callbacks = []
|
||||
|
|
@ -23,7 +28,7 @@ def init_callbacks(patience=-1, nosave=False):
|
|||
return callbacks
|
||||
|
||||
|
||||
def init_model(model_name):
|
||||
def init_model(model_name, nlabels):
|
||||
if model_name == "mbert":
|
||||
hf_name = "bert-base-multilingual-cased"
|
||||
elif model_name == "xlm-roberta":
|
||||
|
|
@ -31,21 +36,35 @@ def init_model(model_name):
|
|||
else:
|
||||
raise NotImplementedError
|
||||
tokenizer = AutoTokenizer.from_pretrained(hf_name)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(hf_name, num_labels=3)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(hf_name, num_labels=nlabels)
|
||||
return tokenizer, model
|
||||
|
||||
|
||||
def main(args):
|
||||
tokenizer, model = init_model(args.model)
|
||||
tokenizer, model = init_model(args.model, args.nlabels)
|
||||
|
||||
# data = load_dataset(
|
||||
# "json",
|
||||
# data_files={
|
||||
# "train": "local_datasets/webis-cls/all-domains/train.json",
|
||||
# "test": "local_datasets/webis-cls/all-domains/test.json",
|
||||
# },
|
||||
# )
|
||||
|
||||
data = load_dataset(
|
||||
"json",
|
||||
data_files={
|
||||
"train": "local_datasets/webis-cls/all-domains/train.json",
|
||||
"test": "local_datasets/webis-cls/all-domains/test.json",
|
||||
},
|
||||
"csv",
|
||||
data_files = {
|
||||
# "train": expanduser("~/datasets/rai/csv/rai-no-it-train.csv"),
|
||||
# "test": expanduser("~/datasets/rai/csv/rai-no-it-test.csv")
|
||||
# "train": expanduser("~/datasets/rai/csv/rai-train.csv"),
|
||||
# "test": expanduser("~/datasets/rai/csv/rai-test-ita-labeled.csv")
|
||||
"train": expanduser("~/datasets/rai/csv/train-split-rai.csv"),
|
||||
"test": expanduser("~/datasets/rai/csv/test-split-rai-labeled.csv")
|
||||
}
|
||||
)
|
||||
|
||||
def process_sample(sample):
|
||||
|
||||
def process_sample_iwslt(sample):
|
||||
inputs = sample["text"]
|
||||
ratings = [r - 1 for r in sample["rating"]]
|
||||
targets = torch.zeros((len(inputs), 3), dtype=float)
|
||||
|
|
@ -56,17 +75,26 @@ def main(args):
|
|||
for i, r in enumerate(ratings):
|
||||
targets[i][r - 1] = 1
|
||||
|
||||
model_inputs = tokenizer(inputs, max_length=512, truncation=True)
|
||||
model_inputs = tokenizer(inputs, max_length=128, truncation=True)
|
||||
model_inputs["labels"] = targets
|
||||
model_inputs["lang_ids"] = torch.tensor(lang_ids)
|
||||
return model_inputs
|
||||
|
||||
|
||||
def process_sample_rai(sample):
|
||||
inputs = [f"{title}. {text}" for title, text in zip(sample["title"], sample["text"])]
|
||||
labels = sample["label"]
|
||||
model_inputs = tokenizer(inputs, max_length=512, truncation=True) # TODO pre-process text cause there's a lot of noise in there...
|
||||
model_inputs["labels"] = labels
|
||||
return model_inputs
|
||||
|
||||
|
||||
data = data.map(
|
||||
process_sample,
|
||||
process_sample_rai,
|
||||
batched=True,
|
||||
num_proc=4,
|
||||
load_from_cache_file=True,
|
||||
remove_columns=["text", "category", "rating", "summary", "title"],
|
||||
remove_columns=RAI_D_COLUMNS,
|
||||
)
|
||||
train_val_splits = data["train"].train_test_split(test_size=0.2, seed=42)
|
||||
data.set_format("torch")
|
||||
|
|
@ -87,7 +115,7 @@ def main(args):
|
|||
recall_metric = evaluate.load("recall")
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{args.model}-sentiment",
|
||||
output_dir=f"{args.model}-rai-final",
|
||||
do_train=True,
|
||||
evaluation_strategy="steps",
|
||||
per_device_train_batch_size=args.batch,
|
||||
|
|
@ -99,7 +127,8 @@ def main(args):
|
|||
max_grad_norm=5.0,
|
||||
num_train_epochs=args.epochs,
|
||||
lr_scheduler_type=args.scheduler,
|
||||
warmup_steps=1000,
|
||||
# warmup_ratio=0.1,
|
||||
warmup_ratio=1500,
|
||||
logging_strategy="steps",
|
||||
logging_first_step=True,
|
||||
logging_steps=args.steplog,
|
||||
|
|
@ -109,7 +138,7 @@ def main(args):
|
|||
save_strategy="no" if args.nosave else "steps",
|
||||
save_total_limit=3,
|
||||
eval_steps=args.stepeval,
|
||||
run_name=f"{args.model}-sentiment-run",
|
||||
run_name=f"{args.model}-rai-stratified",
|
||||
disable_tqdm=False,
|
||||
log_level="warning",
|
||||
report_to=["wandb"] if args.wandb else "none",
|
||||
|
|
@ -119,7 +148,8 @@ def main(args):
|
|||
|
||||
def compute_metrics(eval_preds):
|
||||
preds = eval_preds.predictions.argmax(-1)
|
||||
targets = eval_preds.label_ids.argmax(-1)
|
||||
# targets = eval_preds.label_ids.argmax(-1)
|
||||
targets = eval_preds.label_ids
|
||||
setting = "macro"
|
||||
f1_score_macro = f1_metric.compute(
|
||||
predictions=preds, references=targets, average="macro"
|
||||
|
|
@ -146,7 +176,7 @@ def main(args):
|
|||
|
||||
if args.wandb:
|
||||
import wandb
|
||||
wandb.init(entity="andreapdr", project=f"gfun-senti-hf", name="mbert-sent", config=vars(args))
|
||||
wandb.init(entity="andreapdr", project=f"gfun-rai-hf", name="mbert-sent", config=vars(args))
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
|
|
@ -162,7 +192,6 @@ def main(args):
|
|||
print("- Training:")
|
||||
trainer.train()
|
||||
|
||||
|
||||
print("- Testing:")
|
||||
test_results = trainer.evaluate(eval_dataset=data["test"])
|
||||
print(test_results)
|
||||
|
|
@ -174,13 +203,14 @@ if __name__ == "__main__":
|
|||
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
|
||||
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument("--model", type=str, metavar="", default="mbert")
|
||||
parser.add_argument("--nlabels", type=int, metavar="", default=3)
|
||||
parser.add_argument("--lr", type=float, metavar="", default=1e-5, help="Set learning rate",)
|
||||
parser.add_argument("--scheduler", type=str, metavar="", default="linear", help="Accepted: [\"cosine\", \"cosine-reset\", \"cosine-warmup\", \"cosine-warmup-reset\", \"constant\"]")
|
||||
parser.add_argument("--batch", type=int, metavar="", default=16, help="Set batch size")
|
||||
parser.add_argument("--gradacc", type=int, metavar="", default=1, help="Gradient accumulation steps")
|
||||
parser.add_argument("--epochs", type=int, metavar="", default=100, help="Set epochs")
|
||||
parser.add_argument("--stepeval", type=int, metavar="", default=50, help="Run evaluation every n steps")
|
||||
parser.add_argument("--steplog", type=int, metavar="", default=100, help="Log training every n steps")
|
||||
parser.add_argument("--steplog", type=int, metavar="", default=50, help="Log training every n steps")
|
||||
parser.add_argument("--patience", type=int, metavar="", default=10, help="EarlyStopper patience")
|
||||
parser.add_argument("--fp16", action="store_true", help="Use fp16 precision")
|
||||
parser.add_argument("--wandb", action="store_true", help="Log to wandb")
|
||||
|
|
|
|||
12
main.py
12
main.py
|
|
@ -1,5 +1,3 @@
|
|||
import wandb
|
||||
|
||||
from argparse import ArgumentParser
|
||||
from time import time
|
||||
|
||||
|
|
@ -11,7 +9,6 @@ from gfun.generalizedFunnelling import GeneralizedFunnelling
|
|||
TODO:
|
||||
- General:
|
||||
[!] zero-shot setup
|
||||
- CLS dataset is loading only "books" domain data
|
||||
- Docs:
|
||||
- add documentations sphinx
|
||||
"""
|
||||
|
|
@ -96,7 +93,9 @@ def main(args):
|
|||
|
||||
config = gfun.get_config()
|
||||
|
||||
wandb.init(project="gfun", name=f"gFun-{get_config_name(args)}", config=config)
|
||||
if args.wandb:
|
||||
import wandb
|
||||
wandb.init(project="gfun", name=f"gFun-{get_config_name(args)}", config=config)
|
||||
|
||||
gfun.fit(lX, lY)
|
||||
|
||||
|
|
@ -139,7 +138,8 @@ def main(args):
|
|||
)
|
||||
wandb.log(gfun_res)
|
||||
|
||||
log_barplot_wandb(lang_metrics_gfun, title_affix="per language")
|
||||
if args.wandb:
|
||||
log_barplot_wandb(lang_metrics_gfun, title_affix="per language")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
@ -178,6 +178,8 @@ if __name__ == "__main__":
|
|||
# Visual Transformer parameters --------------
|
||||
parser.add_argument("--visual_trf_name", type=str, default="vit")
|
||||
parser.add_argument("--visual_lr", type=float, default=1e-4)
|
||||
# logging
|
||||
parser.add_argument("--wandb", action="store_true")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue