metrics for binary classification scoring
This commit is contained in:
parent
f274ec7615
commit
48127a2027
|
|
@ -13,6 +13,9 @@ def evaluation_metrics(y, y_):
|
|||
macroK(y, y_),
|
||||
microK(y, y_),
|
||||
# macroAcc(y, y_),
|
||||
microAcc(
|
||||
y, y_
|
||||
), # TODO: we're using micro-averaging for accuracy, it is == to accuracy_score on binary classification
|
||||
)
|
||||
|
||||
|
||||
|
|
@ -32,10 +35,12 @@ def log_eval(l_eval, phase="training", verbose=True):
|
|||
print(f"\n[Results {phase}]")
|
||||
metrics = []
|
||||
for lang in l_eval.keys():
|
||||
macrof1, microf1, macrok, microk = l_eval[lang]
|
||||
metrics.append([macrof1, microf1, macrok, microk])
|
||||
macrof1, microf1, macrok, microk, microAcc = l_eval[lang]
|
||||
metrics.append([macrof1, microf1, macrok, microk, microAcc])
|
||||
if phase != "validation":
|
||||
print(f"Lang {lang}: macro-F1 = {macrof1:.3f} micro-F1 = {microf1:.3f}")
|
||||
print(
|
||||
f"Lang {lang}: macro-F1 = {macrof1:.3f} micro-F1 = {microf1:.3f} acc = {microAcc:.3f}"
|
||||
)
|
||||
averages = np.mean(np.array(metrics), axis=0)
|
||||
if verbose:
|
||||
print(
|
||||
|
|
|
|||
|
|
@ -239,3 +239,7 @@ def microK(true_labels, predicted_labels):
|
|||
|
||||
def macroAcc(true_labels, predicted_labels):
|
||||
return macro_average(true_labels, predicted_labels, accuracy)
|
||||
|
||||
|
||||
def microAcc(true_labels, predicted_labels):
|
||||
return micro_average(true_labels, predicted_labels, accuracy)
|
||||
|
|
|
|||
Loading…
Reference in New Issue