minor updates

This commit is contained in:
Andrea Pedrotti 2023-10-05 15:58:12 +02:00
parent 875af6d362
commit 5d07e579e4
3 changed files with 8 additions and 166 deletions

View File

@ -24,13 +24,15 @@ class SimpleGfunDataset:
visual=False,
multilabel=False,
set_tr_langs=None,
set_te_langs=None
set_te_langs=None,
reduced=False
):
self.name = dataset_name
self.datadir = os.path.expanduser(datadir)
self.textual = textual
self.visual = visual
self.multilabel = multilabel
self.reduced = reduced
self.load_csv(set_tr_langs, set_te_langs)
self.print_stats()
@ -51,7 +53,7 @@ class SimpleGfunDataset:
print(f"tr: {tr} - va: {va} - te: {te}")
def load_csv(self, set_tr_langs, set_te_langs):
_data_tr = pd.read_csv(os.path.join(self.datadir, "train.small.csv"))
_data_tr = pd.read_csv(os.path.join(self.datadir, "train.csv" if not self.reduced else "train.small.csv"))
try:
stratified = "class"
train, val = train_test_split(_data_tr, test_size=0.2, random_state=42, stratify=_data_tr.label)
@ -59,7 +61,7 @@ class SimpleGfunDataset:
stratified = "lang"
train, val = train_test_split(_data_tr, test_size=0.2, random_state=42, stratify=_data_tr.lang)
print(f"- dataset stratified by {stratified}")
test = pd.read_csv(os.path.join(self.datadir, "test.small.csv"))
test = pd.read_csv(os.path.join(self.datadir, "test.small.csv" if not self.reduced else "test.small.csv"))
self._set_langs (train, test, set_tr_langs, set_te_langs)
self._set_labels(_data_tr)
self.full_train = _data_tr
@ -140,168 +142,6 @@ class SimpleGfunDataset:
return one_hot_matrix
class gFunDataset:
def __init__(
self,
dataset_dir,
is_textual,
is_visual,
is_multilabel,
labels=None,
nrows=None,
data_langs=None,
):
self.dataset_dir = dataset_dir
self.data_langs = data_langs
self.is_textual = is_textual
self.is_visual = is_visual
self.is_multilabel = is_multilabel
self.labels = labels
self.nrows = nrows
self.dataset = {}
self._load_dataset()
def get_label_binarizer(self, labels):
if self.dataset_name in ["rcv1-2", "jrc", "cls", "rai"]:
mlb = f"Labels are already binarized for {self.dataset_name} dataset"
elif self.is_multilabel:
mlb = MultiLabelBinarizer()
mlb.fit([labels])
else:
mlb = LabelBinarizer()
mlb.fit(labels)
return mlb
def _load_dataset(self):
print(f"- Loading dataset from {self.dataset_dir}")
self.dataset_name = "rai"
self.dataset, self.labels, self.data_langs = self._load_multilingual(dataset_name=self.dataset_name,
dataset_dir=self.dataset_dir,
nrows=self.nrows)
self.mlb = self.get_label_binarizer(self.labels)
self.show_dimension()
return
def show_dimension(self):
print(f"\n[Dataset: {self.dataset_name.upper()}]")
for lang, data in self.dataset.items():
print(
f"-- Lang: {lang} - train docs: {len(data['train']['text'])} - test docs: {len(data['test']['text'])}"
)
if self.dataset_name in ["rcv1-2", "jrc", "cls", "rai"]:
print(f"-- Labels: {self.labels}")
else:
print(f"-- Labels: {len(self.labels)}")
def _load_multilingual(self, dataset_dir, nrows, dataset_name="rai"):
if "csv" in dataset_dir:
old_dataset = MultilingualDataset(dataset_name="rai").from_csv(
path_tr=os.path.expanduser(os.path.join(dataset_dir, "train.small.csv")),
path_te=os.path.expanduser(os.path.join(dataset_dir, "test.small.csv"))
)
if nrows is not None:
if dataset_name == "cls":
old_dataset.reduce_data(langs=["de", "en", "fr"], maxn=nrows)
else:
old_dataset.reduce_data(langs=["en", "it", "fr"], maxn=nrows)
labels = old_dataset.num_labels()
data_langs = old_dataset.langs()
def _format_multilingual(data):
text = data[0]
image = None
labels = data[1]
return {"text": text, "image": image, "label": labels}
dataset = {
k: {"train": _format_multilingual(v[0]), "test": _format_multilingual(v[1])}
for k, v in old_dataset.multiling_dataset.items()
}
return dataset, labels, data_langs
def _load_glami(self, dataset_dir, nrows):
train_split = get_dataframe("train", dataset_dir=dataset_dir).sample(n=nrows)
test_split = get_dataframe("test", dataset_dir=dataset_dir).sample(
n=int(nrows / 10)
)
gb_train = train_split.groupby("geo")
gb_test = test_split.groupby("geo")
if self.data_langs is None:
data_langs = sorted(train_split.geo.unique().tolist())
if self.labels is None:
labels = train_split.category_name.unique().tolist()
def _format_glami(data_df):
text = (data_df.name + " " + data_df.description).tolist()
image = data_df.image_file.tolist()
labels = data_df.category_name.tolist()
return {"text": text, "image": image, "label": labels}
dataset = {
lang: {
"train": _format_glami(data_tr),
"test": _format_glami(gb_test.get_group(lang)),
}
for lang, data_tr in gb_train
if lang in data_langs
}
return dataset, labels, data_langs
def binarize_labels(self, labels):
if self.dataset_name in ["rcv1-2", "jrc", "cls", "rai"]:
# labels are already binarized for rcv1-2 dataset
return labels
if hasattr(self, "mlb"):
return self.mlb.transform(labels)
else:
raise AttributeError("Label binarizer not found")
def training(self):
lXtr = {}
lYtr = {}
for lang in self.data_langs:
text = self.dataset[lang]["train"]["text"] if self.is_textual else None
img = self.dataset[lang]["train"]["image"] if self.is_visual else None
labels = self.dataset[lang]["train"]["label"]
lXtr[lang] = {"text": text, "image": img}
lYtr[lang] = self.binarize_labels(labels)
return lXtr, lYtr
def test(self):
lXte = {}
lYte = {}
for lang in self.data_langs:
text = self.dataset[lang]["test"]["text"] if self.is_textual else None
img = self.dataset[lang]["test"]["image"] if self.is_visual else None
labels = self.dataset[lang]["test"]["label"]
lXte[lang] = {"text": text, "image": img}
lYte[lang] = self.binarize_labels(labels)
return lXte, lYte
def langs(self):
return self.data_langs
def num_labels(self):
if self.dataset_name not in ["rcv1-2", "jrc", "cls", "rai"]:
return len(self.labels)
else:
return self.labels
def save_as_pickle(self, path):
import pickle
filepath = os.path.join(path, f"{self.dataset_name}_{self.nrows}.pkl")
with open(filepath, "wb") as f:
print(f"- saving dataset in {filepath}")
pickle.dump(self, f)
def _mask_numbers(data):
mask_moredigit = re.compile(r"\s[\+-]?\d{5,}([\.,]\d*)*\b")
mask_4digit = re.compile(r"\s[\+-]?\d{4}([\.,]\d*)*\b")

View File

@ -22,6 +22,7 @@ def get_dataset(datasetp_path, args):
visual=False,
multilabel=False,
set_tr_langs=args.tr_langs,
set_te_langs=args.te_langs
set_te_langs=args.te_langs,
reduced=args.reduced
)
return dataset

View File

@ -185,6 +185,7 @@ if __name__ == "__main__":
parser.add_argument("--max_length", type=int, default=128)
parser.add_argument("--patience", type=int, default=5)
parser.add_argument("--evaluate_step", type=int, default=10)
parser.add_argument("--reduced", action="store_true", help="run on reduced set of documents")
# logging
parser.add_argument("--wandb", action="store_true")