avoid training transformers

This commit is contained in:
Andrea Pedrotti 2023-06-22 11:32:50 +02:00
parent 2554c58fac
commit 60171c1b5e
1 changed files with 54 additions and 52 deletions

View File

@ -114,6 +114,7 @@ class TextualTransformerGen(ViewGen, TransformerGen):
model_name, num_labels=num_labels, output_hidden_states=True
)
else:
model_name = "models/vgfs/trained_transformer/mbert-sentiment/checkpoint-8500" # TODO hardcoded to pre-traiend mbert
return AutoModelForSequenceClassification.from_pretrained(
model_name, num_labels=num_labels, output_hidden_states=True
)
@ -145,58 +146,60 @@ class TextualTransformerGen(ViewGen, TransformerGen):
self.model_name, num_labels=self.num_labels
)
tr_lX, tr_lY, val_lX, val_lY = self.get_train_val_data(
lX, lY, split=0.2, seed=42, modality="text"
)
self.model.to("cuda")
tra_dataloader = self.build_dataloader(
tr_lX,
tr_lY,
processor_fn=self._tokenize,
torchDataset=MultilingualDatasetTorch,
batch_size=self.batch_size,
split="train",
shuffle=True,
)
val_dataloader = self.build_dataloader(
val_lX,
val_lY,
processor_fn=self._tokenize,
torchDataset=MultilingualDatasetTorch,
batch_size=self.batch_size_eval,
split="val",
shuffle=False,
)
experiment_name = f"{self.model_name.replace('/', '-')}-{self.epochs}-{self.batch_size}-{self.dataset_name}"
trainer = Trainer(
model=self.model,
optimizer_name="adamW",
lr=self.lr,
device=self.device,
loss_fn=torch.nn.CrossEntropyLoss(),
print_steps=self.print_steps,
evaluate_step=self.evaluate_step,
patience=self.patience,
experiment_name=experiment_name,
checkpoint_path=os.path.join(
"models",
"vgfs",
"trained_transformer",
self._format_model_name(self.model_name),
),
vgf_name="textual_trf",
classification_type=self.clf_type,
n_jobs=self.n_jobs,
scheduler_name=self.scheduler,
)
trainer.train(
train_dataloader=tra_dataloader,
eval_dataloader=val_dataloader,
epochs=self.epochs,
)
# tr_lX, tr_lY, val_lX, val_lY = self.get_train_val_data(
# lX, lY, split=0.2, seed=42, modality="text"
# )
#
# tra_dataloader = self.build_dataloader(
# tr_lX,
# tr_lY,
# processor_fn=self._tokenize,
# torchDataset=MultilingualDatasetTorch,
# batch_size=self.batch_size,
# split="train",
# shuffle=True,
# )
#
# val_dataloader = self.build_dataloader(
# val_lX,
# val_lY,
# processor_fn=self._tokenize,
# torchDataset=MultilingualDatasetTorch,
# batch_size=self.batch_size_eval,
# split="val",
# shuffle=False,
# )
#
# experiment_name = f"{self.model_name.replace('/', '-')}-{self.epochs}-{self.batch_size}-{self.dataset_name}"
#
# trainer = Trainer(
# model=self.model,
# optimizer_name="adamW",
# lr=self.lr,
# device=self.device,
# loss_fn=torch.nn.CrossEntropyLoss(),
# print_steps=self.print_steps,
# evaluate_step=self.evaluate_step,
# patience=self.patience,
# experiment_name=experiment_name,
# checkpoint_path=os.path.join(
# "models",
# "vgfs",
# "trained_transformer",
# self._format_model_name(self.model_name),
# ),
# vgf_name="textual_trf",
# classification_type=self.clf_type,
# n_jobs=self.n_jobs,
# scheduler_name=self.scheduler,
# )
# trainer.train(
# train_dataloader=tra_dataloader,
# eval_dataloader=val_dataloader,
# epochs=self.epochs,
# )
if self.probabilistic:
self.feature2posterior_projector.fit(self.transform(lX), lY)
@ -225,7 +228,6 @@ class TextualTransformerGen(ViewGen, TransformerGen):
with torch.no_grad():
for input_ids, lang in dataloader:
input_ids = input_ids.to(self.device)
# TODO: check this
if isinstance(self.model, MT5ForSequenceClassification):
batch_embeddings = self.model(input_ids).pooled.cpu().numpy()
else: