Visual VGF + MultiNewsDataset, working from data loading to testing
This commit is contained in:
parent
1a3f931c70
commit
9c2c43dafb
|
@ -27,11 +27,11 @@ class MultiNewsDataset:
|
|||
def __init__(self, data_dir, excluded_langs=[], debug=False):
|
||||
self.debug = debug
|
||||
self.data_dir = data_dir
|
||||
self.langs = self.get_langs()
|
||||
self.dataset_langs = self.get_langs()
|
||||
self.excluded_langs = excluded_langs
|
||||
self.lang_multiModalDataset = {}
|
||||
print(
|
||||
f"[{'DEBUG MODE: ' if debug else ''}Loaded MultiNewsDataset - langs: {self.langs}]"
|
||||
f"[{'DEBUG MODE: ' if debug else ''}Loaded MultiNewsDataset - langs: {[l for l in self.dataset_langs if l not in self.excluded_langs]}]"
|
||||
)
|
||||
self.load_data()
|
||||
self.all_labels = self.get_labels()
|
||||
|
@ -39,12 +39,16 @@ class MultiNewsDataset:
|
|||
self.print_stats()
|
||||
|
||||
def load_data(self):
|
||||
for lang in self.langs:
|
||||
for lang in self.dataset_langs:
|
||||
if lang not in self.excluded_langs:
|
||||
self.lang_multiModalDataset[lang] = MultiModalDataset(
|
||||
lang, join(self.data_dir, lang)
|
||||
)
|
||||
|
||||
def langs(self):
|
||||
return [l for l in self.dataset_langs if l not in self.excluded_langs]
|
||||
return self.get_langs()
|
||||
|
||||
def get_langs(self):
|
||||
from os import listdir
|
||||
|
||||
|
@ -56,13 +60,14 @@ class MultiNewsDataset:
|
|||
def print_stats(self):
|
||||
print(f"[MultiNewsDataset stats]")
|
||||
total_docs = 0
|
||||
for lang in self.langs:
|
||||
for lang in self.dataset_langs:
|
||||
if lang not in self.excluded_langs:
|
||||
_len = len(self.lang_multiModalDataset[lang].data)
|
||||
total_docs += _len
|
||||
print(
|
||||
f" - {lang} docs: {_len}\t- labels: {self._count_lang_labels(self.lang_multiModalDataset[lang].labels)}"
|
||||
)
|
||||
print(f" - total docs: {total_docs}")
|
||||
print(f" - total docs: {total_docs}\n")
|
||||
|
||||
def _count_lang_labels(self, labels):
|
||||
lang_labels = set()
|
||||
|
@ -77,11 +82,16 @@ class MultiNewsDataset:
|
|||
raise NotImplementedError
|
||||
|
||||
def training(self):
|
||||
# TODO: this is a (working) mess - clean this up
|
||||
lXtr = {}
|
||||
lYtr = {}
|
||||
for lang, data in self.lang_multiModalDataset.items():
|
||||
lXtr[lang] = data.data
|
||||
lYtr[lang] = self.label_binarizer.transform(data.labels)
|
||||
_data = [clean_text for _, clean_text, _, _ in data.data]
|
||||
lXtr[lang] = _data
|
||||
lYtr = {
|
||||
lang: self.label_binarizer.transform(data.labels)
|
||||
for lang, data in self.lang_multiModalDataset.items()
|
||||
}
|
||||
|
||||
return lXtr, lYtr
|
||||
|
||||
|
|
|
@ -78,7 +78,6 @@ class GeneralizedFunnelling:
|
|||
if self.posteriors_vgf:
|
||||
fun = VanillaFunGen(
|
||||
base_learner=get_learner(calibrate=True),
|
||||
first_tier_parameters=None,
|
||||
n_jobs=self.n_jobs,
|
||||
)
|
||||
self.first_tier_learners.append(fun)
|
||||
|
|
|
@ -13,8 +13,8 @@ from torch.utils.data import DataLoader, Dataset
|
|||
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||
from vgfs.learners.svms import FeatureSet2Posteriors
|
||||
from vgfs.viewGen import ViewGen
|
||||
|
||||
from evaluation.evaluate import evaluate, log_eval
|
||||
from vgfs.transformerGen import TransformerGen
|
||||
from vgfs.commons import Trainer, predict
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
|
@ -23,7 +23,7 @@ transformers.logging.set_verbosity_error()
|
|||
# TODO: multiple inheritance - maybe define a superclass for TransformerGenerator, whether it is a Textual or a Visual one, implementing dataset creation functions
|
||||
|
||||
|
||||
class TextualTransformerGen(ViewGen):
|
||||
class TextualTransformerGen(ViewGen, TransformerGen):
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
|
@ -40,23 +40,22 @@ class TextualTransformerGen(ViewGen):
|
|||
verbose=False,
|
||||
patience=5,
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.device = device
|
||||
self.model = None
|
||||
self.lr = lr
|
||||
self.epochs = epochs
|
||||
self.tokenizer = None
|
||||
self.max_length = max_length
|
||||
self.batch_size = batch_size
|
||||
self.batch_size_eval = batch_size_eval
|
||||
self.print_steps = print_steps
|
||||
self.probabilistic = probabilistic
|
||||
self.n_jobs = n_jobs
|
||||
super().__init__(
|
||||
model_name,
|
||||
epochs,
|
||||
lr,
|
||||
batch_size,
|
||||
batch_size_eval,
|
||||
max_length,
|
||||
print_steps,
|
||||
device,
|
||||
probabilistic,
|
||||
n_jobs,
|
||||
evaluate_step,
|
||||
verbose,
|
||||
patience,
|
||||
)
|
||||
self.fitted = False
|
||||
self.datasets = {}
|
||||
self.evaluate_step = evaluate_step
|
||||
self.verbose = verbose
|
||||
self.patience = patience
|
||||
self._init()
|
||||
|
||||
def _init(self):
|
||||
|
@ -93,25 +92,6 @@ class TextualTransformerGen(ViewGen):
|
|||
model_name
|
||||
)
|
||||
|
||||
def get_train_val_data(self, lX, lY, split=0.2, seed=42):
|
||||
tr_lX, tr_lY, val_lX, val_lY = {}, {}, {}, {}
|
||||
|
||||
for lang in lX.keys():
|
||||
tr_X, val_X, tr_Y, val_Y = train_test_split(
|
||||
lX[lang], lY[lang], test_size=split, random_state=seed, shuffle=False
|
||||
)
|
||||
tr_lX[lang] = tr_X
|
||||
tr_lY[lang] = tr_Y
|
||||
val_lX[lang] = val_X
|
||||
val_lY[lang] = val_Y
|
||||
|
||||
return tr_lX, tr_lY, val_lX, val_lY
|
||||
|
||||
def build_dataloader(self, lX, lY, batch_size, split="train", shuffle=False):
|
||||
l_tokenized = {lang: self._tokenize(data) for lang, data in lX.items()}
|
||||
self.datasets[split] = MultilingualDatasetTorch(l_tokenized, lY, split=split)
|
||||
return DataLoader(self.datasets[split], batch_size=batch_size, shuffle=shuffle)
|
||||
|
||||
def _tokenize(self, X):
|
||||
return self.tokenizer(
|
||||
X,
|
||||
|
@ -136,11 +116,23 @@ class TextualTransformerGen(ViewGen):
|
|||
)
|
||||
|
||||
tra_dataloader = self.build_dataloader(
|
||||
tr_lX, tr_lY, self.batch_size, split="train", shuffle=True
|
||||
tr_lX,
|
||||
tr_lY,
|
||||
processor_fn=self._tokenize,
|
||||
torchDataset=MultilingualDatasetTorch,
|
||||
batch_size=self.batch_size,
|
||||
split="train",
|
||||
shuffle=True,
|
||||
)
|
||||
|
||||
val_dataloader = self.build_dataloader(
|
||||
val_lX, val_lY, self.batch_size_eval, split="val", shuffle=False
|
||||
val_lX,
|
||||
val_lY,
|
||||
processor_fn=self._tokenize,
|
||||
torchDataset=MultilingualDatasetTorch,
|
||||
batch_size=self.batch_size_eval,
|
||||
split="val",
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
experiment_name = f"{self.model_name}-{self.epochs}-{self.batch_size}"
|
||||
|
@ -173,7 +165,13 @@ class TextualTransformerGen(ViewGen):
|
|||
l_embeds = defaultdict(list)
|
||||
|
||||
dataloader = self.build_dataloader(
|
||||
lX, lY=None, batch_size=self.batch_size_eval, split="whole", shuffle=False
|
||||
lX,
|
||||
lY=None,
|
||||
processor_fn=self._tokenize,
|
||||
torchDataset=MultilingualDatasetTorch,
|
||||
batch_size=self.batch_size_eval,
|
||||
split="whole",
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
self.model.eval()
|
||||
|
@ -245,146 +243,3 @@ class MultilingualDatasetTorch(Dataset):
|
|||
if self.split == "whole":
|
||||
return self.X[index], self.langs[index]
|
||||
return self.X[index], self.Y[index], self.langs[index]
|
||||
|
||||
|
||||
class Trainer:
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
optimizer_name,
|
||||
device,
|
||||
loss_fn,
|
||||
lr,
|
||||
print_steps,
|
||||
evaluate_step,
|
||||
patience,
|
||||
experiment_name,
|
||||
):
|
||||
self.device = device
|
||||
self.model = model.to(device)
|
||||
self.optimizer = self.init_optimizer(optimizer_name, lr)
|
||||
self.evaluate_steps = evaluate_step
|
||||
self.loss_fn = loss_fn.to(device)
|
||||
self.print_steps = print_steps
|
||||
self.earlystopping = EarlyStopping(
|
||||
patience=patience,
|
||||
checkpoint_path="models/vgfs/transformers/",
|
||||
verbose=True,
|
||||
experiment_name=experiment_name,
|
||||
)
|
||||
|
||||
def init_optimizer(self, optimizer_name, lr):
|
||||
if optimizer_name.lower() == "adamw":
|
||||
return AdamW(self.model.parameters(), lr=lr)
|
||||
else:
|
||||
raise ValueError(f"Optimizer {optimizer_name} not supported")
|
||||
|
||||
def train(self, train_dataloader, eval_dataloader, epochs=10):
|
||||
print(
|
||||
f"""- Training params:
|
||||
- epochs: {epochs}
|
||||
- learning rate: {self.optimizer.defaults['lr']}
|
||||
- train batch size: {train_dataloader.batch_size}
|
||||
- eval batch size: {eval_dataloader.batch_size}
|
||||
- max len: {train_dataloader.dataset.X.shape[-1]}\n""",
|
||||
)
|
||||
for epoch in range(epochs):
|
||||
self.train_epoch(train_dataloader, epoch)
|
||||
if (epoch + 1) % self.evaluate_steps == 0:
|
||||
metric_watcher = self.evaluate(eval_dataloader)
|
||||
stop = self.earlystopping(metric_watcher, self.model, epoch + 1)
|
||||
if stop:
|
||||
break
|
||||
return self.model
|
||||
|
||||
def train_epoch(self, dataloader, epoch):
|
||||
self.model.train()
|
||||
for b_idx, (x, y, lang) in enumerate(dataloader):
|
||||
self.optimizer.zero_grad()
|
||||
y_hat = self.model(x.to(self.device))
|
||||
loss = self.loss_fn(y_hat.logits, y.to(self.device))
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
if b_idx % self.print_steps == 0:
|
||||
print(f"Epoch: {epoch+1} Step: {b_idx+1} Loss: {loss:.4f}")
|
||||
return self
|
||||
|
||||
def evaluate(self, dataloader):
|
||||
self.model.eval()
|
||||
|
||||
lY = defaultdict(list)
|
||||
lY_hat = defaultdict(list)
|
||||
|
||||
for b_idx, (x, y, lang) in enumerate(dataloader):
|
||||
y_hat = self.model(x.to(self.device))
|
||||
loss = self.loss_fn(y_hat.logits, y.to(self.device))
|
||||
predictions = predict(y_hat.logits, classification_type="multilabel")
|
||||
|
||||
for l, _true, _pred in zip(lang, y, predictions):
|
||||
lY[l].append(_true.detach().cpu().numpy())
|
||||
lY_hat[l].append(_pred)
|
||||
|
||||
for lang in lY:
|
||||
lY[lang] = np.vstack(lY[lang])
|
||||
lY_hat[lang] = np.vstack(lY_hat[lang])
|
||||
|
||||
l_eval = evaluate(lY, lY_hat)
|
||||
average_metrics = log_eval(l_eval, phase="validation")
|
||||
return average_metrics[0] # macro-F1
|
||||
|
||||
|
||||
class EarlyStopping:
|
||||
def __init__(
|
||||
self,
|
||||
patience=5,
|
||||
min_delta=0,
|
||||
verbose=True,
|
||||
checkpoint_path="checkpoint.pt",
|
||||
experiment_name="experiment",
|
||||
):
|
||||
self.patience = patience
|
||||
self.min_delta = min_delta
|
||||
self.counter = 0
|
||||
self.best_score = 0
|
||||
self.best_epoch = None
|
||||
self.verbose = verbose
|
||||
self.checkpoint_path = checkpoint_path
|
||||
self.experiment_name = experiment_name
|
||||
|
||||
def __call__(self, validation, model, epoch):
|
||||
if validation > self.best_score:
|
||||
print(
|
||||
f"- earlystopping: Validation score improved from {self.best_score:.3f} to {validation:.3f}"
|
||||
)
|
||||
self.best_score = validation
|
||||
self.counter = 0
|
||||
# self.save_model(model)
|
||||
elif validation < (self.best_score + self.min_delta):
|
||||
self.counter += 1
|
||||
print(
|
||||
f"- earlystopping: Validation score decreased from {self.best_score:.3f} to {validation:.3f}, current patience: {self.patience - self.counter}"
|
||||
)
|
||||
if self.counter >= self.patience:
|
||||
if self.verbose:
|
||||
print(f"- earlystopping: Early stopping at epoch {epoch}")
|
||||
return True
|
||||
|
||||
def save_model(self, model):
|
||||
_checkpoint_dir = os.path.join(self.checkpoint_path, self.experiment_name)
|
||||
print(f"- saving model to {_checkpoint_dir}")
|
||||
os.makedirs(_checkpoint_dir, exist_ok=True)
|
||||
model.save_pretrained(_checkpoint_dir)
|
||||
|
||||
|
||||
def predict(logits, classification_type="multilabel"):
|
||||
"""
|
||||
Converts soft precictions to hard predictions [0,1]
|
||||
"""
|
||||
if classification_type == "multilabel":
|
||||
prediction = torch.sigmoid(logits) > 0.5
|
||||
elif classification_type == "singlelabel":
|
||||
prediction = torch.argmax(logits, dim=1).view(-1, 1)
|
||||
else:
|
||||
print("unknown classification type")
|
||||
|
||||
return prediction.detach().cpu().numpy()
|
||||
|
|
|
@ -9,7 +9,39 @@ class TransformerGen:
|
|||
form of dictioanries {lang: data}
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
epochs=10,
|
||||
lr=1e-5,
|
||||
batch_size=4,
|
||||
batch_size_eval=32,
|
||||
max_length=512,
|
||||
print_steps=50,
|
||||
device="cpu",
|
||||
probabilistic=False,
|
||||
n_jobs=-1,
|
||||
evaluate_step=10,
|
||||
verbose=False,
|
||||
patience=5,
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.device = device
|
||||
self.model = None
|
||||
self.lr = lr
|
||||
self.epochs = epochs
|
||||
self.tokenizer = None
|
||||
self.max_length = max_length
|
||||
self.batch_size = batch_size
|
||||
self.batch_size_eval = batch_size_eval
|
||||
self.print_steps = print_steps
|
||||
self.probabilistic = probabilistic
|
||||
self.n_jobs = n_jobs
|
||||
self.fitted = False
|
||||
self.datasets = {}
|
||||
self.evaluate_step = evaluate_step
|
||||
self.verbose = verbose
|
||||
self.patience = patience
|
||||
self.datasets = {}
|
||||
|
||||
def build_dataloader(
|
||||
|
|
|
@ -22,7 +22,6 @@ class VanillaFunGen(ViewGen):
|
|||
self.n_jobs = n_jobs
|
||||
self.doc_projector = NaivePolylingualClassifier(
|
||||
base_learner=self.learners,
|
||||
parameters=self.first_tier_parameters,
|
||||
n_jobs=self.n_jobs,
|
||||
)
|
||||
self.vectorizer = None
|
||||
|
|
|
@ -10,21 +10,33 @@ from torch.utils.data import DataLoader, Dataset
|
|||
from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor
|
||||
from gfun.vgfs.commons import Trainer, predict
|
||||
from gfun.vgfs.transformerGen import TransformerGen
|
||||
from transformers import AutoModelForImageClassification, TrainingArguments, Trainer
|
||||
from transformers import AutoModelForImageClassification
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
|
||||
class VisualTransformerGen(ViewGen, TransformerGen):
|
||||
def __init__(
|
||||
self, model_name, lr=1e-5, epochs=10, batch_size=32, batch_size_eval=128
|
||||
self,
|
||||
model_name,
|
||||
lr=1e-5,
|
||||
epochs=10,
|
||||
batch_size=32,
|
||||
batch_size_eval=128,
|
||||
evaluate_step=10,
|
||||
device="cpu",
|
||||
patience=5,
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.datasets = {}
|
||||
self.lr = lr
|
||||
self.epochs = epochs
|
||||
self.batch_size = batch_size
|
||||
self.batch_size_eval = batch_size_eval
|
||||
super().__init__(
|
||||
model_name,
|
||||
lr=lr,
|
||||
epochs=epochs,
|
||||
batch_size=batch_size,
|
||||
batch_size_eval=batch_size_eval,
|
||||
device=device,
|
||||
evaluate_step=evaluate_step,
|
||||
patience=patience,
|
||||
)
|
||||
|
||||
def _validate_model_name(self, model_name):
|
||||
if "vit" == model_name:
|
||||
|
@ -33,10 +45,8 @@ class VisualTransformerGen(ViewGen, TransformerGen):
|
|||
raise NotImplementedError
|
||||
|
||||
def init_model(self, model_name, num_labels):
|
||||
model = (
|
||||
AutoModelForImageClassification.from_pretrained(
|
||||
model = AutoModelForImageClassification.from_pretrained(
|
||||
model_name, num_labels=num_labels
|
||||
),
|
||||
)
|
||||
image_processor = AutoImageProcessor.from_pretrained(model_name)
|
||||
transforms = self.init_preprocessor(image_processor)
|
||||
|
@ -100,9 +110,9 @@ class VisualTransformerGen(ViewGen, TransformerGen):
|
|||
trainer = Trainer(
|
||||
model=self.model,
|
||||
optimizer_name="adamW",
|
||||
lr=self.lr,
|
||||
device=self.device,
|
||||
loss_fn=torch.nn.CrossEntropyLoss(),
|
||||
lr=self.lr,
|
||||
print_steps=self.print_steps,
|
||||
evaluate_step=self.evaluate_step,
|
||||
patience=self.patience,
|
||||
|
@ -111,7 +121,7 @@ class VisualTransformerGen(ViewGen, TransformerGen):
|
|||
|
||||
trainer.train(
|
||||
train_dataloader=tra_dataloader,
|
||||
val_dataloader=val_dataloader,
|
||||
eval_dataloader=val_dataloader,
|
||||
epochs=self.epochs,
|
||||
)
|
||||
|
||||
|
@ -149,7 +159,7 @@ class MultimodalDatasetTorch(Dataset):
|
|||
],
|
||||
[],
|
||||
)
|
||||
print(f"- lX has shape: {self.X.shape}\n- lY has shape: {self.Y.shape}")
|
||||
# print(f"- lX has shape: {self.X.shape}\n- lY has shape: {self.Y.shape}")
|
||||
|
||||
def __len__(self):
|
||||
return len(self.X)
|
||||
|
@ -169,7 +179,8 @@ if __name__ == "__main__":
|
|||
dataset = MultiNewsDataset(expanduser(_dataset_path_hardcoded), debug=True)
|
||||
lXtr, lYtr = dataset.training()
|
||||
|
||||
vg = VisualTransformerGen(model_name="vit")
|
||||
vg = VisualTransformerGen(
|
||||
model_name="vit", device="cuda", epochs=1000, evaluate_step=10, patience=100
|
||||
)
|
||||
lX, lY = dataset.training()
|
||||
vg.fit(lX, lY)
|
||||
print("lel")
|
||||
|
|
36
main.py
36
main.py
|
@ -16,26 +16,46 @@ TODO:
|
|||
"""
|
||||
|
||||
|
||||
def main(args):
|
||||
# Loading dataset ------------------------
|
||||
def get_dataset(datasetname):
|
||||
assert datasetname in ["multinews", "amazon", "rcv1-2"], "dataset not supported"
|
||||
RCV_DATAPATH = expanduser(
|
||||
"~/datasets/rcv1-2/rcv1-2_doclist_trByLang1000_teByLang1000_processed_run0.pickle"
|
||||
)
|
||||
# dataset = MultiNewsDataset(expanduser(args.dataset_path))
|
||||
# dataset = AmazonDataset(domains=args.domains,nrows=args.nrows,min_count=args.min_count,max_labels=args.max_labels)
|
||||
MULTINEWS_DATAPATH = expanduser("~/datasets/MultiNews/20110730/")
|
||||
if datasetname == "multinews":
|
||||
dataset = MultiNewsDataset(
|
||||
expanduser(MULTINEWS_DATAPATH),
|
||||
excluded_langs=["ar", "pe", "pl", "tr", "ua"],
|
||||
)
|
||||
elif datasetname == "amazon":
|
||||
dataset = AmazonDataset(
|
||||
domains=args.domains,
|
||||
nrows=args.nrows,
|
||||
min_count=args.min_count,
|
||||
max_labels=args.max_labels,
|
||||
)
|
||||
elif datasetname == "rcv1-2":
|
||||
dataset = (
|
||||
MultilingualDataset(dataset_name="rcv1-2")
|
||||
.load(RCV_DATAPATH)
|
||||
.reduce_data(langs=["en", "it", "fr"], maxn=100)
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return dataset
|
||||
|
||||
if isinstance(dataset, MultilingualDataset):
|
||||
|
||||
def main(args):
|
||||
dataset = get_dataset(args.dataset)
|
||||
if isinstance(dataset, MultilingualDataset) or isinstance(
|
||||
dataset, MultiNewsDataset
|
||||
):
|
||||
lX, lY = dataset.training()
|
||||
lX_te, lY_te = dataset.test()
|
||||
# lX_te, lY_te = dataset.test()
|
||||
lX_te, lY_te = dataset.training()
|
||||
else:
|
||||
_lX = dataset.dX
|
||||
_lY = dataset.dY
|
||||
# ----------------------------------------
|
||||
|
||||
tinit = time()
|
||||
|
||||
|
@ -74,6 +94,7 @@ def main(args):
|
|||
gfun.fit(lX, lY)
|
||||
|
||||
if args.load_trained is None:
|
||||
print("[NB: FORCE-SKIPPING MODEL SAVE]")
|
||||
gfun.save()
|
||||
|
||||
# if not args.load_model:
|
||||
|
@ -98,6 +119,7 @@ if __name__ == "__main__":
|
|||
parser = ArgumentParser()
|
||||
parser.add_argument("-l", "--load_trained", type=str, default=None)
|
||||
# Dataset parameters -------------------
|
||||
parser.add_argument("-d", "--dataset", type=str, default="multinews")
|
||||
parser.add_argument("--domains", type=str, default="all")
|
||||
parser.add_argument("--nrows", type=int, default=10000)
|
||||
parser.add_argument("--min_count", type=int, default=10)
|
||||
|
|
Loading…
Reference in New Issue