webis-unprocessed dataset

This commit is contained in:
Andrea Pedrotti 2023-06-12 12:12:31 +02:00
parent b3b7c69263
commit 9ce0001047
3 changed files with 116 additions and 18 deletions

View File

@ -1,5 +1,6 @@
import sys
import os
import xml.etree.ElementTree as ET
sys.path.append(os.getcwd())
@ -8,13 +9,70 @@ import re
from dataManager.multilingualDataset import MultilingualDataset
CLS_PROCESSED_DATA_DIR = os.path.expanduser("~/datasets/cls-acl10-processed/")
LANGS = ["de", "en", "fr", "jp"]
CLS_UNPROCESSED_DATA_DIR = os.path.expanduser("~/datasets/cls-acl10-unprocessed/")
# LANGS = ["de", "en", "fr", "jp"]
LANGS = ["de", "en", "fr"]
DOMAINS = ["books", "dvd", "music"]
regex = r":\d+"
subst = ""
def load_unprocessed_cls(reduce_target_space=False):
data = {}
for lang in LANGS:
data[lang] = {}
for domain in DOMAINS:
data[lang][domain] = {}
print(f"lang: {lang}, domain: {domain}")
for split in ["train", "test"]:
domain_data = []
fdir = os.path.join(
CLS_UNPROCESSED_DATA_DIR, lang, domain, f"{split}.review"
)
tree = ET.parse(fdir)
root = tree.getroot()
for child in root:
if reduce_target_space:
rating = np.zeros(3, dtype=int)
original_rating = int(float(child.find("rating").text))
if original_rating < 3:
new_rating = 1
elif original_rating > 3:
new_rating = 3
else:
new_rating = 2
rating[new_rating - 1] = 1
else:
rating = np.zeros(5, dtype=int)
rating[int(float(child.find("rating").text)) - 1] = 1
domain_data.append(
{
"asin": child.find("asin").text
if child.find("asin") is not None
else None,
"category": child.find("category").text
if child.find("category") is not None
else None,
# "rating": child.find("rating").text
# if child.find("rating") is not None
# else None,
"rating": rating,
"title": child.find("title").text
if child.find("title") is not None
else None,
"text": child.find("text").text
if child.find("text") is not None
else None,
"summary": child.find("summary").text
if child.find("summary") is not None
else None,
}
)
data[lang][domain].update({split: domain_data})
return data
def load_cls():
data = {}
for lang in LANGS:
@ -24,7 +82,7 @@ def load_cls():
train = (
open(
os.path.join(
CLS_PROCESSED_DATA_DIR, lang, domain, "train.processed"
CLS_UNPROCESSED_DATA_DIR, lang, domain, "train.processed"
),
"r",
)
@ -34,7 +92,7 @@ def load_cls():
test = (
open(
os.path.join(
CLS_PROCESSED_DATA_DIR, lang, domain, "test.processed"
CLS_UNPROCESSED_DATA_DIR, lang, domain, "test.processed"
),
"r",
)
@ -59,18 +117,29 @@ def process_data(line):
if __name__ == "__main__":
print(f"datapath: {CLS_PROCESSED_DATA_DIR}")
data = load_cls()
multilingualDataset = MultilingualDataset(dataset_name="cls")
for lang in LANGS:
# TODO: just using book domain atm
Xtr = [text[0] for text in data[lang]["books"]["train"]]
# Ytr = np.expand_dims([text[1] for text in data[lang]["books"]["train"]], axis=1)
Ytr = np.vstack([text[1] for text in data[lang]["books"]["train"]])
print(f"datapath: {CLS_UNPROCESSED_DATA_DIR}")
# data = load_cls()
data = load_unprocessed_cls(reduce_target_space=True)
multilingualDataset = MultilingualDataset(dataset_name="webis-cls-unprocessed")
Xte = [text[0] for text in data[lang]["books"]["test"]]
# Yte = np.expand_dims([text[1] for text in data[lang]["books"]["test"]], axis=1)
Yte = np.vstack([text[1] for text in data[lang]["books"]["test"]])
for lang in LANGS:
# Xtr = [text["summary"] for text in data[lang]["books"]["train"]]
Xtr = [text["text"] for text in data[lang]["books"]["train"]]
Ytr = np.vstack([text["rating"] for text in data[lang]["books"]["train"]])
# Xte = [text["summary"] for text in data[lang]["books"]["test"]]
Xte = [text["text"] for text in data[lang]["books"]["test"]]
Yte = np.vstack([text["rating"] for text in data[lang]["books"]["test"]])
# for lang in LANGS:
# # TODO: just using book domain atm
# Xtr = [text[0] for text in data[lang]["books"]["train"]]
# # Ytr = np.expand_dims([text[1] for text in data[lang]["books"]["train"]], axis=1)
# Ytr = np.vstack([text[1] for text in data[lang]["books"]["train"]])
# Xte = [text[0] for text in data[lang]["books"]["test"]]
# # Yte = np.expand_dims([text[1] for text in data[lang]["books"]["test"]], axis=1)
# Yte = np.vstack([text[1] for text in data[lang]["books"]["test"]])
multilingualDataset.add(
lang=lang,
@ -82,5 +151,7 @@ if __name__ == "__main__":
te_ids=None,
)
multilingualDataset.save(
os.path.expanduser("~/datasets/cls-acl10-processed/cls-acl10-processed.pkl")
os.path.expanduser(
"~/datasets/cls-acl10-unprocessed/cls-acl10-unprocessed-book.pkl"
)
)

View File

@ -62,14 +62,29 @@ class gFunDataset:
)
self.mlb = self.get_label_binarizer(self.labels)
elif "cls" in self.dataset_dir.lower():
print(f"- Loading CLS dataset from {self.dataset_dir}")
# WEBIS-CLS (processed)
elif (
"cls" in self.dataset_dir.lower()
and "unprocessed" not in self.dataset_dir.lower()
):
print(f"- Loading WEBIS-CLS (processed) dataset from {self.dataset_dir}")
self.dataset_name = "cls"
self.dataset, self.labels, self.data_langs = self._load_multilingual(
self.dataset_name, self.dataset_dir, self.nrows
)
self.mlb = self.get_label_binarizer(self.labels)
# WEBIS-CLS (unprocessed)
elif (
"cls" in self.dataset_dir.lower()
and "unprocessed" in self.dataset_dir.lower()
):
print(f"- Loading WEBIS-CLS (unprocessed) dataset from {self.dataset_dir}")
self.dataset_name = "cls"
self.dataset, self.labels, self.data_langs = self._load_multilingual(
self.dataset_name, self.dataset_dir, self.nrows
)
self.mlb = self.get_label_binarizer(self.labels)
self.show_dimension()
return

View File

@ -23,6 +23,7 @@ def get_dataset(dataset_name, args):
"rcv1-2",
"glami",
"cls",
"webis",
], "dataset not supported"
RCV_DATAPATH = expanduser(
@ -37,7 +38,9 @@ def get_dataset(dataset_name, args):
GLAMI_DATAPATH = expanduser("~/datasets/GLAMI-1M-dataset")
WEBIS_CLS = expanduser("~/dataset/cls-acl10-unprocessed")
WEBIS_CLS = expanduser(
"~/datasets/cls-acl10-unprocessed/cls-acl10-unprocessed-book.pkl"
)
if dataset_name == "multinews":
# TODO: convert to gFunDataset
@ -93,6 +96,15 @@ def get_dataset(dataset_name, args):
is_multilabel=False,
nrows=args.nrows,
)
elif dataset_name == "webis":
dataset = gFunDataset(
dataset_dir=WEBIS_CLS,
is_textual=True,
is_visual=False,
is_multilabel=False,
nrows=args.nrows,
)
else:
raise NotImplementedError
return dataset