From b6b1d33fdb791170cfb7529c10d57ffb805edb86 Mon Sep 17 00:00:00 2001 From: andreapdr Date: Tue, 4 Jul 2023 10:43:33 +0200 Subject: [PATCH] set test key_prefix in test phase for wandb --- hf_trainer.py | 23 ++++++++++++----------- 1 file changed, 12 insertions(+), 11 deletions(-) diff --git a/hf_trainer.py b/hf_trainer.py index 9c11a5c..9437119 100644 --- a/hf_trainer.py +++ b/hf_trainer.py @@ -47,8 +47,8 @@ def main(args): data = load_dataset( "csv", data_files = { - "train": expanduser("~/datasets/rai/csv/train-rai-multilingual-2000.csv"), - "test": expanduser("~/datasets/rai/csv/test-rai-multilingual-2000.csv") + "train": expanduser("~/datasets/rai/csv/train-split-rai.csv"), + "test": expanduser("~/datasets/rai/csv/test-split-rai.csv") } ) @@ -81,7 +81,7 @@ def main(args): process_sample_rai, batched=True, num_proc=4, - load_from_cache_file=False, + load_from_cache_file=True, remove_columns=RAI_D_COLUMNS, ) train_val_splits = data["train"].train_test_split(test_size=0.2, seed=42) @@ -103,7 +103,7 @@ def main(args): recall_metric = evaluate.load("recall") training_args = TrainingArguments( - output_dir=f"{args.model}-rai-multi-2000", + output_dir=f"hf_models/{args.model}-rai-fewshot", do_train=True, evaluation_strategy="steps", per_device_train_batch_size=args.batch, @@ -123,13 +123,14 @@ def main(args): fp16=args.fp16, load_best_model_at_end=False if args.nosave else True, save_strategy="no" if args.nosave else "steps", - save_total_limit=3, + save_total_limit=2, eval_steps=args.stepeval, run_name=f"{args.model}-rai-stratified", disable_tqdm=False, log_level="warning", report_to=["wandb"] if args.wandb else "none", optim="adamw_torch", + save_steps=args.stepeval ) @@ -163,7 +164,7 @@ def main(args): if args.wandb: import wandb - wandb.init(entity="andreapdr", project=f"gfun-rai-hf", name="mbert-sent", config=vars(args)) + wandb.init(entity="andreapdr", project=f"gfun-rai-hf", name="mbert-rai", config=vars(args)) trainer = Trainer( model=model, @@ -176,11 +177,11 @@ def main(args): callbacks=callbacks, ) - # print("- Training:") - # trainer.train() + print("- Training:") + trainer.train() print("- Testing:") - test_results = trainer.evaluate(eval_dataset=data["test"]) + test_results = trainer.evaluate(eval_dataset=data["test"], metric_key_prefix="test") print(test_results) exit() @@ -191,8 +192,8 @@ if __name__ == "__main__": parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("--model", type=str, metavar="", default="mbert") parser.add_argument("--nlabels", type=int, metavar="", default=28) - parser.add_argument("--lr", type=float, metavar="", default=1e-5, help="Set learning rate",) - parser.add_argument("--scheduler", type=str, metavar="", default="linear", help="Accepted: [\"cosine\", \"cosine-reset\", \"cosine-warmup\", \"cosine-warmup-reset\", \"constant\"]") + parser.add_argument("--lr", type=float, metavar="", default=1e-4, help="Set learning rate",) + parser.add_argument("--scheduler", type=str, metavar="", default="cosine", help="Accepted: [\"cosine\", \"cosine-reset\", \"cosine-warmup\", \"cosine-warmup-reset\", \"constant\"]") parser.add_argument("--batch", type=int, metavar="", default=8, help="Set batch size") parser.add_argument("--gradacc", type=int, metavar="", default=1, help="Gradient accumulation steps") parser.add_argument("--epochs", type=int, metavar="", default=100, help="Set epochs")