from joblib import Parallel, delayed from evaluation.metrics import * def evaluation_metrics(y, y_): if len(y.shape) == len(y_.shape) == 1 and len(np.unique(y)) > 2: # single-label raise NotImplementedError() # return f1_score(y,y_,average='macro'), f1_score(y,y_,average='micro') else: # the metrics I implemented assume multiclass multilabel classification as binary classifiers return macroF1(y, y_), microF1(y, y_), macroK(y, y_), microK(y, y_) # return macroF1(y, y_), microF1(y, y_), macroK(y, y_), macroAcc(y, y_) def evaluate(ly_true, ly_pred, metrics=evaluation_metrics, n_jobs=-1): if n_jobs == 1: return {lang: metrics(ly_true[lang], ly_pred[lang]) for lang in ly_true.keys()} else: langs = list(ly_true.keys()) evals = Parallel(n_jobs=n_jobs)( delayed(metrics)(ly_true[lang], ly_pred[lang]) for lang in langs ) return {lang: evals[i] for i, lang in enumerate(langs)} def log_eval(l_eval, phase="training", verbose=True): if verbose: print(f"\n[Results {phase}]") metrics = [] for lang in l_eval.keys(): macrof1, microf1, macrok, microk = l_eval[lang] metrics.append([macrof1, microf1, macrok, microk]) if phase != "validation": print(f"Lang {lang}: macro-F1 = {macrof1:.3f} micro-F1 = {microf1:.3f}") averages = np.mean(np.array(metrics), axis=0) if verbose: print( "Averages: MF1, mF1, MK, mK", np.round(averages, 3), "\n", ) return averages