gfun_multimodal/main.py

185 lines
6.7 KiB
Python

import wandb
from argparse import ArgumentParser
from time import time
from dataManager.utils import get_dataset
from evaluation.evaluate import evaluate, log_eval
from gfun.generalizedFunnelling import GeneralizedFunnelling
"""
TODO:
- General:
[!] zero-shot setup
- CLS dataset is loading only "books" domain data
- Docs:
- add documentations sphinx
"""
def get_config_name(args):
config_name = ""
if args.posteriors:
config_name += "P+"
if args.wce:
config_name += "W+"
if args.multilingual:
config_name += "M+"
if args.textual_transformer:
config_name += f"TT_{args.textual_trf_name}+"
if args.visual_transformer:
config_name += f"VT_{args.visual_trf_name}+"
return config_name.rstrip("+")
def main(args):
dataset = get_dataset(args.dataset, args)
lX, lY = dataset.training()
lX_te, lY_te = dataset.test()
tinit = time()
if args.load_trained is None:
assert any(
[
args.posteriors,
args.wce,
args.multilingual,
args.multilingual,
args.textual_transformer,
args.visual_transformer,
]
), "At least one of VGF must be True"
gfun = GeneralizedFunnelling(
# dataset params ----------------------
dataset_name=args.dataset,
langs=dataset.langs(),
num_labels=dataset.num_labels(),
classification_type=args.clf_type,
# Posterior VGF params ----------------
posterior=args.posteriors,
# Multilingual VGF params -------------
multilingual=args.multilingual,
embed_dir="~/resources/muse_embeddings",
# WCE VGF params ----------------------
wce=args.wce,
# Transformer VGF params --------------
textual_transformer=args.textual_transformer,
textual_transformer_name=args.textual_trf_name,
batch_size=args.batch_size,
eval_batch_size=args.eval_batch_size,
epochs=args.epochs,
textual_lr=args.textual_lr,
visual_lr=args.visual_lr,
max_length=args.max_length,
patience=args.patience,
evaluate_step=args.evaluate_step,
device=args.device,
# Visual Transformer VGF params --------------
visual_transformer=args.visual_transformer,
visual_transformer_name=args.visual_trf_name,
# batch_size=args.batch_size,
# epochs=args.epochs,
# lr=args.lr,
# patience=args.patience,
# evaluate_step=args.evaluate_step,
# device="cuda",
# General params ---------------------
probabilistic=args.features,
aggfunc=args.aggfunc,
optimc=args.optimc,
load_trained=args.load_trained,
load_meta=args.meta,
n_jobs=args.n_jobs,
)
config = gfun.get_config()
wandb.init(project="gfun", name=f"gFun-{get_config_name(args)}", config=config)
gfun.fit(lX, lY)
if args.load_trained is None and not args.nosave:
gfun.save(save_first_tier=True, save_meta=True)
timetr = time()
print(f"- training completed in {timetr - tinit:.2f} seconds")
gfun_preds = gfun.transform(lX_te)
test_eval = evaluate(lY_te, gfun_preds, clf_type=args.clf_type, n_jobs=args.n_jobs)
avg_metrics_gfun, lang_metrics_gfun = log_eval(
test_eval, phase="test", clf_type=args.clf_type
)
timeval = time()
print(f"- testing completed in {timeval - timetr:.2f} seconds")
def log_barplot_wandb(gfun_res, title_affix="per langauge"):
if title_affix == "per language":
for metric, lang_values in gfun_res.items():
data = [[lang, v] for lang, v in lang_values.items()]
table = wandb.Table(data=data, columns=["lang", f"{metric}"])
wandb.log(
{
f"gFun/language {metric}": wandb.plot.bar(
table, "lang", metric, title=f"{metric} {title_affix}"
)
}
)
else:
data = [[metric, value] for metric, value in gfun_res.items()]
table = wandb.Table(data=data, columns=["metric", "value"])
wandb.log(
{
f"gFun/average metric": wandb.plot.bar(
table, "metric", "value", title=f"metric {title_affix}"
)
}
)
wandb.log(gfun_res)
log_barplot_wandb(lang_metrics_gfun, title_affix="per language")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-l", "--load_trained", type=str, default=None)
parser.add_argument("--meta", action="store_true")
parser.add_argument("--nosave", action="store_true")
parser.add_argument("--device", type=str, default="cuda")
# Dataset parameters -------------------
parser.add_argument("-d", "--dataset", type=str, default="rcv1-2")
parser.add_argument("--domains", type=str, default="all")
parser.add_argument("--nrows", type=int, default=None)
parser.add_argument("--min_count", type=int, default=10)
parser.add_argument("--max_labels", type=int, default=50)
parser.add_argument("--clf_type", type=str, default="multilabel")
parser.add_argument("--save_dataset", action="store_true")
# gFUN parameters ----------------------
parser.add_argument("-p", "--posteriors", action="store_true")
parser.add_argument("-m", "--multilingual", action="store_true")
parser.add_argument("-w", "--wce", action="store_true")
parser.add_argument("-t", "--textual_transformer", action="store_true")
parser.add_argument("-v", "--visual_transformer", action="store_true")
parser.add_argument("--n_jobs", type=int, default=-1)
parser.add_argument("--optimc", action="store_true")
parser.add_argument("--features", action="store_false")
parser.add_argument("--aggfunc", type=str, default="mean")
# transformer parameters ---------------
parser.add_argument("--epochs", type=int, default=5)
parser.add_argument("--textual_trf_name", type=str, default="mbert")
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--eval_batch_size", type=int, default=128)
parser.add_argument("--textual_lr", type=float, default=1e-4)
parser.add_argument("--max_length", type=int, default=128)
parser.add_argument("--patience", type=int, default=5)
parser.add_argument("--evaluate_step", type=int, default=10)
# Visual Transformer parameters --------------
parser.add_argument("--visual_trf_name", type=str, default="vit")
parser.add_argument("--visual_lr", type=float, default=1e-4)
args = parser.parse_args()
main(args)