gfun_multimodal/gfun/vgfs/textualTransformerGen.py

245 lines
7.4 KiB
Python

import os
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from collections import defaultdict
import numpy as np
import torch
import transformers
# from sklearn.model_selection import train_test_split
# from torch.optim import AdamW
from torch.utils.data import Dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from gfun.vgfs.commons import Trainer
from gfun.vgfs.transformerGen import TransformerGen
from gfun.vgfs.viewGen import ViewGen
transformers.logging.set_verbosity_error()
# TODO: add support to loggers
class TextualTransformerGen(ViewGen, TransformerGen):
def __init__(
self,
model_name,
dataset_name,
epochs=10,
lr=1e-5,
batch_size=4,
batch_size_eval=32,
max_length=512,
print_steps=50,
device="cpu",
probabilistic=False,
n_jobs=-1,
evaluate_step=10,
verbose=False,
patience=5,
):
super().__init__(
self._validate_model_name(model_name),
dataset_name,
epochs,
lr,
batch_size,
batch_size_eval,
max_length,
print_steps,
device,
probabilistic,
n_jobs,
evaluate_step,
verbose,
patience,
)
self.fitted = False
print(
f"- init Textual TransformerModel model_name: {self.model_name}, device: {self.device}]"
)
def _validate_model_name(self, model_name):
if "bert" == model_name:
return "bert-base-uncased"
elif "mbert" == model_name:
return "bert-base-multilingual-uncased"
elif "xlm" == model_name:
return "xlm-roberta-base"
else:
raise NotImplementedError
def load_pretrained_model(self, model_name, num_labels):
return AutoModelForSequenceClassification.from_pretrained(
model_name, num_labels=num_labels, output_hidden_states=True
)
def load_tokenizer(self, model_name):
return AutoTokenizer.from_pretrained(model_name)
def init_model(self, model_name, num_labels):
return self.load_pretrained_model(model_name, num_labels), self.load_tokenizer(
model_name
)
def _tokenize(self, X):
return self.tokenizer(
X,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.max_length,
)
def fit(self, lX, lY):
if self.fitted:
return self
print("- fitting Textual Transformer View Generating Function")
_l = list(lX.keys())[0]
self.num_labels = lY[_l].shape[-1]
self.model, self.tokenizer = self.init_model(
self.model_name, num_labels=self.num_labels
)
tr_lX, tr_lY, val_lX, val_lY = self.get_train_val_data(
lX, lY, split=0.2, seed=42, modality="text"
)
tra_dataloader = self.build_dataloader(
tr_lX,
tr_lY,
processor_fn=self._tokenize,
torchDataset=MultilingualDatasetTorch,
batch_size=self.batch_size,
split="train",
shuffle=True,
)
val_dataloader = self.build_dataloader(
val_lX,
val_lY,
processor_fn=self._tokenize,
torchDataset=MultilingualDatasetTorch,
batch_size=self.batch_size_eval,
split="val",
shuffle=False,
)
experiment_name = (
f"{self.model_name}-{self.epochs}-{self.batch_size}-{self.dataset_name}"
)
trainer = Trainer(
model=self.model,
optimizer_name="adamW",
lr=self.lr,
device=self.device,
loss_fn=torch.nn.CrossEntropyLoss(),
print_steps=self.print_steps,
evaluate_step=self.evaluate_step,
patience=self.patience,
experiment_name=experiment_name,
checkpoint_path="models/vgfs/transformer",
)
trainer.train(
train_dataloader=tra_dataloader,
eval_dataloader=val_dataloader,
epochs=self.epochs,
)
if self.probabilistic:
self.feature2posterior_projector.fit(self.transform(lX), lY)
self.fitted = True
return self
def transform(self, lX):
# forcing to only text modality
lX = {lang: data["text"] for lang, data in lX.items()}
_embeds = []
l_embeds = defaultdict(list)
dataloader = self.build_dataloader(
lX,
lY=None,
processor_fn=self._tokenize,
torchDataset=MultilingualDatasetTorch,
batch_size=self.batch_size_eval,
split="whole",
shuffle=False,
)
self.model.eval()
with torch.no_grad():
for input_ids, lang in dataloader:
input_ids = input_ids.to(self.device)
out = self.model(input_ids).hidden_states[-1]
batch_embeddings = out[:, 0, :].cpu().numpy()
_embeds.append((batch_embeddings, lang))
for embed, lang in _embeds:
for sample_embed, sample_lang in zip(embed, lang):
l_embeds[sample_lang].append(sample_embed)
if self.probabilistic and self.fitted:
l_embeds = self.feature2posterior_projector.transform(l_embeds)
elif not self.probabilistic and self.fitted:
l_embeds = {lang: np.array(preds) for lang, preds in l_embeds.items()}
return l_embeds
def fit_transform(self, lX, lY):
return self.fit(lX, lY).transform(lX)
def save_vgf(self, model_id):
import pickle
from os import makedirs
from os.path import join
vgf_name = "textualTransformerGen"
_basedir = join("models", "vgfs", "textual_transformer")
makedirs(_basedir, exist_ok=True)
_path = join(_basedir, f"{vgf_name}_{model_id}.pkl")
with open(_path, "wb") as f:
pickle.dump(self, f)
return self
def __str__(self):
str = f"[Transformer VGF (t)]\n- model_name: {self.model_name}\n- max_length: {self.max_length}\n- batch_size: {self.batch_size}\n- batch_size_eval: {self.batch_size_eval}\n- lr: {self.lr}\n- epochs: {self.epochs}\n- device: {self.device}\n- print_steps: {self.print_steps}\n- evaluate_step: {self.evaluate_step}\n- patience: {self.patience}\n- probabilistic: {self.probabilistic}\n"
return str
class MultilingualDatasetTorch(Dataset):
def __init__(self, lX, lY, split="train"):
self.lX = lX
self.lY = lY
self.split = split
self.langs = []
self.init()
def init(self):
self.X = torch.vstack([data.input_ids for data in self.lX.values()])
if self.split != "whole":
self.Y = torch.vstack([torch.Tensor(data) for data in self.lY.values()])
self.langs = sum(
[
v
for v in {
lang: [lang] * len(data.input_ids) for lang, data in self.lX.items()
}.values()
],
[],
)
return self
def __len__(self):
return len(self.X)
def __getitem__(self, index):
if self.split == "whole":
return self.X[index], self.langs[index]
return self.X[index], self.Y[index], self.langs[index]