123 lines
4.1 KiB
Python
123 lines
4.1 KiB
Python
import pickle
|
|
from argparse import ArgumentParser
|
|
from os.path import expanduser
|
|
from time import time
|
|
|
|
from dataManager.amazonDataset import AmazonDataset
|
|
from dataManager.multilingualDatset import MultilingualDataset
|
|
from dataManager.multiNewsDataset import MultiNewsDataset
|
|
from evaluation.evaluate import evaluate, log_eval
|
|
from gfun.generalizedFunnelling import GeneralizedFunnelling
|
|
|
|
"""
|
|
TODO:
|
|
- a cleaner way to save the model? each VGF saved independently (together with
|
|
standardizer and feature2posteriors). What about the metaclassifier and the vectorizers?
|
|
- add documentations sphinx
|
|
- zero-shot setup
|
|
|
|
"""
|
|
|
|
|
|
def main(args):
|
|
# Loading dataset ------------------------
|
|
RCV_DATAPATH = expanduser(
|
|
"~/datasets/rcv1-2/rcv1-2_doclist_trByLang1000_teByLang1000_processed_run0.pickle"
|
|
)
|
|
# dataset = MultiNewsDataset(expanduser(args.dataset_path))
|
|
# dataset = AmazonDataset(domains=args.domains,nrows=args.nrows,min_count=args.min_count,max_labels=args.max_labels)
|
|
dataset = (
|
|
MultilingualDataset(dataset_name="rcv1-2")
|
|
.load(RCV_DATAPATH)
|
|
.reduce_data(langs=["en", "it", "fr"], maxn=100)
|
|
)
|
|
|
|
if isinstance(dataset, MultilingualDataset):
|
|
lX, lY = dataset.training()
|
|
lX_te, lY_te = dataset.test()
|
|
else:
|
|
_lX = dataset.dX
|
|
_lY = dataset.dY
|
|
# ----------------------------------------
|
|
|
|
tinit = time()
|
|
|
|
if not args.load_trained:
|
|
assert any(
|
|
[
|
|
args.posteriors,
|
|
args.wce,
|
|
args.multilingual,
|
|
args.multilingual,
|
|
args.transformer,
|
|
]
|
|
), "At least one of VGF must be True"
|
|
|
|
gfun = GeneralizedFunnelling(
|
|
posterior=args.posteriors,
|
|
multilingual=args.multilingual,
|
|
wce=args.wce,
|
|
transformer=args.transformer,
|
|
langs=dataset.langs(),
|
|
embed_dir="~/resources/muse_embeddings",
|
|
n_jobs=args.n_jobs,
|
|
max_length=args.max_length,
|
|
batch_size=args.batch_size,
|
|
epochs=args.epochs,
|
|
lr=args.lr,
|
|
patience=args.patience,
|
|
evaluate_step=args.evaluate_step,
|
|
transformer_name=args.transformer_name,
|
|
device="cuda",
|
|
optimc=args.optimc,
|
|
load_trained=args.load_trained,
|
|
)
|
|
|
|
gfun.fit(lX, lY)
|
|
|
|
# if not args.load_model:
|
|
# gfun.save()
|
|
|
|
preds = gfun.transform(lX)
|
|
|
|
train_eval = evaluate(lY, preds)
|
|
log_eval(train_eval, phase="train")
|
|
|
|
timetr = time()
|
|
print(f"- training completed in {timetr - tinit:.2f} seconds")
|
|
|
|
test_eval = evaluate(lY_te, gfun.transform(lX_te))
|
|
log_eval(test_eval, phase="test")
|
|
|
|
timeval = time()
|
|
print(f"- testing completed in {timeval - timetr:.2f} seconds")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser()
|
|
parser.add_argument("-l", "--load_trained", action="store_true")
|
|
# Dataset parameters -------------------
|
|
parser.add_argument("--domains", type=str, default="all")
|
|
parser.add_argument("--nrows", type=int, default=10000)
|
|
parser.add_argument("--min_count", type=int, default=10)
|
|
parser.add_argument("--max_labels", type=int, default=50)
|
|
# gFUN parameters ----------------------
|
|
parser.add_argument("-p", "--posteriors", action="store_true")
|
|
parser.add_argument("-m", "--multilingual", action="store_true")
|
|
parser.add_argument("-w", "--wce", action="store_true")
|
|
parser.add_argument("-t", "--transformer", action="store_true")
|
|
parser.add_argument("--n_jobs", type=int, default=1)
|
|
parser.add_argument("--optimc", action="store_true")
|
|
# transformer parameters ---------------
|
|
parser.add_argument("--transformer_name", type=str, default="mbert")
|
|
parser.add_argument("--batch_size", type=int, default=32)
|
|
parser.add_argument("--epochs", type=int, default=10)
|
|
parser.add_argument("--lr", type=float, default=1e-5)
|
|
parser.add_argument("--max_length", type=int, default=512)
|
|
parser.add_argument("--patience", type=int, default=5)
|
|
parser.add_argument("--evaluate_step", type=int, default=10)
|
|
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|