gfun_multimodal/gfun/vgfs/commons.py

75 lines
2.0 KiB
Python

from sklearn.preprocessing import normalize
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
import numpy as np
def _normalize(lX, l2=True):
return {lang: normalize(np.asarray(X)) for lang, X in lX.items()} if l2 else lX
def XdotM(X, M, sif):
E = X.dot(M)
if sif:
E = remove_pc(E, npc=1)
return E
def remove_pc(X, npc=1):
"""
Remove the projection on the principal components
:param X: X[i,:] is a data point
:param npc: number of principal components to remove
:return: XX[i, :] is the data point after removing its projection
"""
pc = compute_pc(X, npc)
if npc == 1:
XX = X - X.dot(pc.transpose()) * pc
else:
XX = X - X.dot(pc.transpose()).dot(pc)
return XX
class TfidfVectorizerMultilingual:
def __init__(self, **kwargs):
self.kwargs = kwargs
def fit(self, lX, ly=None):
self.langs = sorted(lX.keys())
self.vectorizer = {
l: TfidfVectorizer(**self.kwargs).fit(lX[l]) for l in self.langs
}
return self
def transform(self, lX):
return {l: self.vectorizer[l].transform(lX[l]) for l in self.langs}
def fit_transform(self, lX, ly=None):
return self.fit(lX, ly).transform(lX)
def vocabulary(self, l=None):
if l is None:
return {l: self.vectorizer[l].vocabulary_ for l in self.langs}
else:
return self.vectorizer[l].vocabulary_
def get_analyzer(self, l=None):
if l is None:
return {l: self.vectorizer[l].build_analyzer() for l in self.langs}
else:
return self.vectorizer[l].build_analyzer()
def compute_pc(X, npc=1):
"""
Compute the principal components.
:param X: X[i,:] is a data point
:param npc: number of principal components to remove
:return: component_[i,:] is the i-th pc
"""
if isinstance(X, np.matrix):
X = np.asarray(X)
svd = TruncatedSVD(n_components=npc, n_iter=7, random_state=0)
svd.fit(X)
return svd.components_