42 lines
1.3 KiB
Python
42 lines
1.3 KiB
Python
from sklearn.model_selection import train_test_split
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
|
|
|
class TransformerGen:
|
|
"""Base class for all transformers. It implements the basic methods for
|
|
the creation of the datasets, datalaoders and the train-val split method.
|
|
It is designed to be used with MultilingualDataset in the
|
|
form of dictioanries {lang: data}
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.datasets = {}
|
|
|
|
def build_dataloader(
|
|
self,
|
|
lX,
|
|
lY,
|
|
torchDataset,
|
|
processor_fn,
|
|
batch_size,
|
|
split="train",
|
|
shuffle=False,
|
|
):
|
|
l_tokenized = {lang: processor_fn(data) for lang, data in lX.items()}
|
|
self.datasets[split] = torchDataset(l_tokenized, lY, split=split)
|
|
return DataLoader(self.datasets[split], batch_size=batch_size, shuffle=shuffle)
|
|
|
|
def get_train_val_data(self, lX, lY, split=0.2, seed=42):
|
|
tr_lX, tr_lY, val_lX, val_lY = {}, {}, {}, {}
|
|
|
|
for lang in lX.keys():
|
|
tr_X, val_X, tr_Y, val_Y = train_test_split(
|
|
lX[lang], lY[lang], test_size=split, random_state=seed, shuffle=False
|
|
)
|
|
tr_lX[lang] = tr_X
|
|
tr_lY[lang] = tr_Y
|
|
val_lX[lang] = val_X
|
|
val_lY[lang] = val_Y
|
|
|
|
return tr_lX, tr_lY, val_lX, val_lY
|