gfun_multimodal/gfun/vgfs/transformerGen.py

42 lines
1.3 KiB
Python

from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
class TransformerGen:
"""Base class for all transformers. It implements the basic methods for
the creation of the datasets, datalaoders and the train-val split method.
It is designed to be used with MultilingualDataset in the
form of dictioanries {lang: data}
"""
def __init__(self):
self.datasets = {}
def build_dataloader(
self,
lX,
lY,
torchDataset,
processor_fn,
batch_size,
split="train",
shuffle=False,
):
l_tokenized = {lang: processor_fn(data) for lang, data in lX.items()}
self.datasets[split] = torchDataset(l_tokenized, lY, split=split)
return DataLoader(self.datasets[split], batch_size=batch_size, shuffle=shuffle)
def get_train_val_data(self, lX, lY, split=0.2, seed=42):
tr_lX, tr_lY, val_lX, val_lY = {}, {}, {}, {}
for lang in lX.keys():
tr_X, val_X, tr_Y, val_Y = train_test_split(
lX[lang], lY[lang], test_size=split, random_state=seed, shuffle=False
)
tr_lX[lang] = tr_X
tr_lY[lang] = tr_Y
val_lX[lang] = val_X
val_lY[lang] = val_Y
return tr_lX, tr_lY, val_lX, val_lY