2023-11-08 17:26:44 +01:00
|
|
|
from time import time
|
|
|
|
|
|
|
|
import numpy as np
|
2023-11-22 19:25:12 +01:00
|
|
|
import scipy.sparse as sp
|
|
|
|
from quapy.protocol import APP
|
|
|
|
from sklearn.linear_model import LinearRegression, LogisticRegression
|
|
|
|
from sklearn.metrics import accuracy_score
|
2023-11-08 17:26:44 +01:00
|
|
|
|
2023-11-22 19:25:12 +01:00
|
|
|
from baselines.mandoline import estimate_performance
|
2023-11-08 17:26:44 +01:00
|
|
|
from quacc.dataset import Dataset
|
|
|
|
|
|
|
|
|
2023-11-22 19:25:12 +01:00
|
|
|
def test_lr():
|
2023-11-08 17:26:44 +01:00
|
|
|
d = Dataset(name="rcv1", target="CCAT", n_prevalences=1).get_raw()
|
|
|
|
|
|
|
|
classifier = LogisticRegression()
|
|
|
|
classifier.fit(*d.train.Xy)
|
|
|
|
|
2023-11-22 19:25:12 +01:00
|
|
|
val, _ = d.validation.split_stratified(0.5, random_state=0)
|
|
|
|
val_X, val_y = val.X, val.y
|
|
|
|
val_probs = classifier.predict_proba(val_X)
|
|
|
|
|
|
|
|
reg_X = sp.hstack([val_X, val_probs])
|
|
|
|
reg_y = val_probs[np.arange(val_probs.shape[0]), val_y]
|
|
|
|
reg = LinearRegression()
|
|
|
|
reg.fit(reg_X, reg_y)
|
|
|
|
|
|
|
|
_test_num = 10000
|
|
|
|
test_X = d.test.X[:_test_num, :]
|
|
|
|
test_probs = classifier.predict_proba(test_X)
|
|
|
|
test_reg_X = sp.hstack([test_X, test_probs])
|
|
|
|
reg_pred = reg.predict(test_reg_X)
|
|
|
|
|
|
|
|
def threshold(pred):
|
|
|
|
# return np.mean(
|
|
|
|
# (reg.predict(test_reg_X) >= pred)
|
|
|
|
# == (
|
|
|
|
# test_probs[np.arange(_test_num), d.test.y[:_test_num]] == np.max(test_probs, axis=1)
|
|
|
|
# )
|
|
|
|
# )
|
|
|
|
return np.mean(
|
|
|
|
(reg.predict(test_reg_X) >= pred)
|
|
|
|
== (np.argmax(test_probs, axis=1) == d.test.y[:_test_num])
|
2023-11-08 17:26:44 +01:00
|
|
|
)
|
|
|
|
|
2023-11-22 19:25:12 +01:00
|
|
|
max_p, max_acc = 0, 0
|
|
|
|
for p in reg_pred:
|
|
|
|
acc = threshold(p)
|
|
|
|
if acc > max_acc:
|
|
|
|
max_acc = acc
|
|
|
|
max_p = p
|
|
|
|
|
|
|
|
print(f"{max_p = }, {max_acc = }")
|
|
|
|
reg_pred = reg_pred - max_p + 0.5
|
|
|
|
print(reg_pred)
|
|
|
|
print(np.mean(reg_pred >= 0.5))
|
|
|
|
print(np.mean(np.argmax(test_probs, axis=1) == d.test.y[:_test_num]))
|
|
|
|
|
|
|
|
|
|
|
|
def entropy(probas):
|
|
|
|
return -np.sum(np.multiply(probas, np.log(probas + 1e-20)), axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
def get_slices(probas):
|
|
|
|
ln, ncl = probas.shape
|
|
|
|
preds = np.argmax(probas, axis=1)
|
|
|
|
pred_slices = np.full((ln, ncl), fill_value=-1, dtype="<i8")
|
|
|
|
pred_slices[np.arange(ln), preds] = 1
|
2023-11-08 17:26:44 +01:00
|
|
|
|
2023-11-22 19:25:12 +01:00
|
|
|
ent = entropy(probas)
|
|
|
|
n_bins = 10
|
|
|
|
range_top = entropy(np.array([np.ones(ncl) / ncl]))[0]
|
|
|
|
bins = np.linspace(0, range_top, n_bins + 1)
|
|
|
|
bin_map = np.digitize(ent, bins=bins, right=True) - 1
|
|
|
|
ent_slices = np.full((ln, n_bins), fill_value=-1, dtype="<i8")
|
|
|
|
ent_slices[np.arange(ln), bin_map] = 1
|
2023-11-08 17:26:44 +01:00
|
|
|
|
2023-11-22 19:25:12 +01:00
|
|
|
return np.concatenate([pred_slices, ent_slices], axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
def test_mandoline():
|
|
|
|
d = Dataset(name="cifar10", target="dog", n_prevalences=1).get_raw()
|
|
|
|
|
|
|
|
tstart = time()
|
|
|
|
classifier = LogisticRegression()
|
|
|
|
classifier.fit(*d.train.Xy)
|
|
|
|
|
|
|
|
val_probs = classifier.predict_proba(d.validation.X)
|
|
|
|
val_preds = np.argmax(val_probs, axis=1)
|
|
|
|
D_val = get_slices(val_probs)
|
|
|
|
emprical_mat_list_val = (1.0 * (val_preds == d.validation.y))[:, np.newaxis]
|
2023-11-08 17:26:44 +01:00
|
|
|
|
|
|
|
protocol = APP(
|
|
|
|
d.test,
|
|
|
|
sample_size=1000,
|
|
|
|
n_prevalences=21,
|
2023-11-22 19:25:12 +01:00
|
|
|
repeats=100,
|
2023-11-08 17:26:44 +01:00
|
|
|
return_type="labelled_collection",
|
|
|
|
)
|
2023-11-22 19:25:12 +01:00
|
|
|
res = []
|
|
|
|
for test in protocol():
|
|
|
|
test_probs = classifier.predict_proba(test.X)
|
|
|
|
test_preds = np.argmax(test_probs, axis=1)
|
|
|
|
D_test = get_slices(test_probs)
|
|
|
|
wp = estimate_performance(D_val, D_test, None, emprical_mat_list_val)
|
|
|
|
score = wp.all_estimates[0].weighted[0]
|
|
|
|
res.append(abs(score - accuracy_score(test.y, test_preds)))
|
|
|
|
print(score)
|
|
|
|
res = np.array(res).reshape((21, 100))
|
|
|
|
print(res.mean(axis=1))
|
|
|
|
print(f"time: {time() - tstart}s")
|
2023-11-08 17:26:44 +01:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2023-11-22 19:25:12 +01:00
|
|
|
test_mandoline()
|