added kde implementation, switched to dataclass
This commit is contained in:
parent
d6736d194b
commit
58661e7f93
|
|
@ -1,26 +1,35 @@
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import List
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from quapy.method.aggregative import PACC, SLD
|
from quapy.method.aggregative import PACC, SLD, BaseQuantifier
|
||||||
from quapy.protocol import UPP, AbstractProtocol
|
from quapy.protocol import UPP, AbstractProtocol
|
||||||
from sklearn.linear_model import LogisticRegression
|
from sklearn.linear_model import LogisticRegression
|
||||||
from sklearn.svm import LinearSVC
|
from sklearn.svm import LinearSVC
|
||||||
|
|
||||||
import quacc as qc
|
import quacc as qc
|
||||||
from quacc.evaluation.report import EvaluationReport
|
from quacc.evaluation.report import EvaluationReport
|
||||||
|
from quacc.method.base import BQAE, MCAE, BaseAccuracyEstimator
|
||||||
from quacc.method.model_selection import GridSearchAE
|
from quacc.method.model_selection import GridSearchAE
|
||||||
|
from quacc.quantification import KDEy
|
||||||
from ..method.base import BQAE, MCAE, BaseAccuracyEstimator
|
|
||||||
|
|
||||||
_param_grid = {
|
_param_grid = {
|
||||||
"sld": {
|
"sld": {
|
||||||
"q__classifier__C": np.logspace(-3, 3, 7),
|
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||||
"q__classifier__class_weight": [None, "balanced"],
|
"q__classifier__class_weight": [None, "balanced"],
|
||||||
"q__recalib": [None, "bcts"],
|
"q__recalib": [None, "bcts"],
|
||||||
"confidence": [["isoft"], ["max_conf", "entropy"]],
|
"confidence": [None, ["isoft"], ["max_conf", "entropy"]],
|
||||||
},
|
},
|
||||||
"pacc": {
|
"pacc": {
|
||||||
"q__classifier__C": np.logspace(-3, 3, 7),
|
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||||
"q__classifier__class_weight": [None, "balanced"],
|
"q__classifier__class_weight": [None, "balanced"],
|
||||||
"confidence": [["isoft"], ["max_conf", "entropy"]],
|
"confidence": [None, ["isoft"], ["max_conf", "entropy"]],
|
||||||
|
},
|
||||||
|
"kde": {
|
||||||
|
"q__classifier__C": np.logspace(-3, 3, 7),
|
||||||
|
"q__classifier__class_weight": [None, "balanced"],
|
||||||
|
"q__bandwidth": np.linspace(0.01, 0.2, 5),
|
||||||
|
"confidence": [None, ["isoft"]],
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -56,38 +65,42 @@ def evaluation_report(
|
||||||
return report
|
return report
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(frozen=True)
|
||||||
class EvaluationMethod:
|
class EvaluationMethod:
|
||||||
def __init__(self, name, q, est_c, conf=None, cf=False):
|
name: str
|
||||||
self.name = name
|
q: BaseQuantifier
|
||||||
self.__name__ = name
|
est_n: str
|
||||||
self.q = q
|
conf: List[str] | str = None
|
||||||
self.est_c = est_c
|
cf: bool = False
|
||||||
self.conf = conf
|
|
||||||
self.cf = cf
|
def get_est(self, c_model):
|
||||||
|
match self.est_n:
|
||||||
|
case "mul":
|
||||||
|
return MCAE(
|
||||||
|
c_model,
|
||||||
|
self.q,
|
||||||
|
confidence=self.conf,
|
||||||
|
collapse_false=self.cf,
|
||||||
|
)
|
||||||
|
case "bin":
|
||||||
|
return BQAE(c_model, self.q, confidence=self.conf)
|
||||||
|
|
||||||
def __call__(self, c_model, validation, protocol) -> EvaluationReport:
|
def __call__(self, c_model, validation, protocol) -> EvaluationReport:
|
||||||
est = self.est_c(
|
est = self.get_est(c_model).fit(validation)
|
||||||
c_model,
|
|
||||||
self.q,
|
|
||||||
confidence=self.conf,
|
|
||||||
collapse_false=self.cf,
|
|
||||||
).fit(validation)
|
|
||||||
return evaluation_report(
|
return evaluation_report(
|
||||||
estimator=est, protocol=protocol, method_name=self.name
|
estimator=est, protocol=protocol, method_name=self.name
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(frozen=True)
|
||||||
class EvaluationMethodGridSearch(EvaluationMethod):
|
class EvaluationMethodGridSearch(EvaluationMethod):
|
||||||
def __init__(self, name, q, est_c, cf=False, pg="sld"):
|
pg: str = "sld"
|
||||||
super().__init__(name, q, est_c, cf=cf)
|
|
||||||
self.pg = pg
|
|
||||||
|
|
||||||
def __call__(self, c_model, validation, protocol) -> EvaluationReport:
|
def __call__(self, c_model, validation, protocol) -> EvaluationReport:
|
||||||
v_train, v_val = validation.split_stratified(0.6, random_state=0)
|
v_train, v_val = validation.split_stratified(0.6, random_state=0)
|
||||||
model = self.est_c(c_model, self.q, collapse_false=self.cf)
|
|
||||||
__grid = _param_grid.get(self.pg, {})
|
__grid = _param_grid.get(self.pg, {})
|
||||||
est = GridSearchAE(
|
est = GridSearchAE(
|
||||||
model=model,
|
model=self.get_est(c_model),
|
||||||
param_grid=__grid,
|
param_grid=__grid,
|
||||||
refit=False,
|
refit=False,
|
||||||
protocol=UPP(v_val, repeats=100),
|
protocol=UPP(v_val, repeats=100),
|
||||||
|
|
@ -108,6 +121,10 @@ def __sld_lr():
|
||||||
return SLD(LogisticRegression())
|
return SLD(LogisticRegression())
|
||||||
|
|
||||||
|
|
||||||
|
def __kde_lr():
|
||||||
|
return KDEy(LogisticRegression())
|
||||||
|
|
||||||
|
|
||||||
def __sld_lsvc():
|
def __sld_lsvc():
|
||||||
return SLD(LinearSVC())
|
return SLD(LinearSVC())
|
||||||
|
|
||||||
|
|
@ -119,37 +136,54 @@ def __pacc_lr():
|
||||||
# fmt: off
|
# fmt: off
|
||||||
__methods_set = [
|
__methods_set = [
|
||||||
# base sld
|
# base sld
|
||||||
M("bin_sld", __sld_lr(), BQAE ),
|
M("bin_sld", __sld_lr(), "bin" ),
|
||||||
M("mul_sld", __sld_lr(), MCAE ),
|
M("mul_sld", __sld_lr(), "mul" ),
|
||||||
M("m3w_sld", __sld_lr(), MCAE, cf=True),
|
M("m3w_sld", __sld_lr(), "mul", cf=True),
|
||||||
# max_conf + entropy sld
|
# max_conf + entropy sld
|
||||||
M("binc_sld", __sld_lr(), BQAE, conf=["max_conf", "entropy"] ),
|
M("binc_sld", __sld_lr(), "bin", conf=["max_conf", "entropy"] ),
|
||||||
M("mulc_sld", __sld_lr(), MCAE, conf=["max_conf", "entropy"] ),
|
M("mulc_sld", __sld_lr(), "mul", conf=["max_conf", "entropy"] ),
|
||||||
M("m3wc_sld", __sld_lr(), MCAE, conf=["max_conf", "entropy"], cf=True),
|
M("m3wc_sld", __sld_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
|
||||||
# max_conf sld
|
# max_conf sld
|
||||||
M("binmc_sld", __sld_lr(), BQAE, conf="max_conf", ),
|
M("binmc_sld", __sld_lr(), "bin", conf="max_conf", ),
|
||||||
M("mulmc_sld", __sld_lr(), MCAE, conf="max_conf", ),
|
M("mulmc_sld", __sld_lr(), "mul", conf="max_conf", ),
|
||||||
M("m3wmc_sld", __sld_lr(), MCAE, conf="max_conf", cf=True),
|
M("m3wmc_sld", __sld_lr(), "mul", conf="max_conf", cf=True),
|
||||||
# entropy sld
|
# entropy sld
|
||||||
M("binne_sld", __sld_lr(), BQAE, conf="entropy", ),
|
M("binne_sld", __sld_lr(), "bin", conf="entropy", ),
|
||||||
M("mulne_sld", __sld_lr(), MCAE, conf="entropy", ),
|
M("mulne_sld", __sld_lr(), "mul", conf="entropy", ),
|
||||||
M("m3wne_sld", __sld_lr(), MCAE, conf="entropy", cf=True),
|
M("m3wne_sld", __sld_lr(), "mul", conf="entropy", cf=True),
|
||||||
# inverse softmax sld
|
# inverse softmax sld
|
||||||
M("binis_sld", __sld_lr(), BQAE, conf="isoft", ),
|
M("binis_sld", __sld_lr(), "bin", conf="isoft", ),
|
||||||
M("mulis_sld", __sld_lr(), MCAE, conf="isoft", ),
|
M("mulis_sld", __sld_lr(), "mul", conf="isoft", ),
|
||||||
M("m3wis_sld", __sld_lr(), MCAE, conf="isoft", cf=True),
|
M("m3wis_sld", __sld_lr(), "mul", conf="isoft", cf=True),
|
||||||
# inverse softmax sld
|
|
||||||
M("binis_pacc", __pacc_lr(), BQAE, conf="isoft", ),
|
|
||||||
M("mulis_pacc", __pacc_lr(), MCAE, conf="isoft", ),
|
|
||||||
M("m3wis_pacc", __pacc_lr(), MCAE, conf="isoft", cf=True),
|
|
||||||
# gs sld
|
# gs sld
|
||||||
G("bin_sld_gs", __sld_lr(), BQAE, pg="sld" ),
|
G("bin_sld_gs", __sld_lr(), "bin", pg="sld" ),
|
||||||
G("mul_sld_gs", __sld_lr(), MCAE, pg="sld" ),
|
G("mul_sld_gs", __sld_lr(), "mul", pg="sld" ),
|
||||||
G("m3w_sld_gs", __sld_lr(), MCAE, pg="sld", cf=True),
|
G("m3w_sld_gs", __sld_lr(), "mul", pg="sld", cf=True),
|
||||||
# gs pacc
|
|
||||||
G("bin_pacc_gs", __pacc_lr(), BQAE, pg="pacc" ),
|
# base kde
|
||||||
G("mul_pacc_gs", __pacc_lr(), MCAE, pg="pacc" ),
|
M("bin_kde", __kde_lr(), "bin" ),
|
||||||
G("m3w_pacc_gs", __pacc_lr(), MCAE, pg="pacc", cf=True),
|
M("mul_kde", __kde_lr(), "mul" ),
|
||||||
|
M("m3w_kde", __kde_lr(), "mul", cf=True),
|
||||||
|
# max_conf + entropy kde
|
||||||
|
M("binc_kde", __kde_lr(), "bin", conf=["max_conf", "entropy"] ),
|
||||||
|
M("mulc_kde", __kde_lr(), "mul", conf=["max_conf", "entropy"] ),
|
||||||
|
M("m3wc_kde", __kde_lr(), "mul", conf=["max_conf", "entropy"], cf=True),
|
||||||
|
# max_conf kde
|
||||||
|
M("binmc_kde", __kde_lr(), "bin", conf="max_conf", ),
|
||||||
|
M("mulmc_kde", __kde_lr(), "mul", conf="max_conf", ),
|
||||||
|
M("m3wmc_kde", __kde_lr(), "mul", conf="max_conf", cf=True),
|
||||||
|
# entropy kde
|
||||||
|
M("binne_kde", __kde_lr(), "bin", conf="entropy", ),
|
||||||
|
M("mulne_kde", __kde_lr(), "mul", conf="entropy", ),
|
||||||
|
M("m3wne_kde", __kde_lr(), "mul", conf="entropy", cf=True),
|
||||||
|
# inverse softmax kde
|
||||||
|
M("binis_kde", __kde_lr(), "bin", conf="isoft", ),
|
||||||
|
M("mulis_kde", __kde_lr(), "mul", conf="isoft", ),
|
||||||
|
M("m3wis_kde", __kde_lr(), "mul", conf="isoft", cf=True),
|
||||||
|
# gs kde
|
||||||
|
G("bin_kde_gs", __kde_lr(), "bin", pg="kde", ),
|
||||||
|
G("mul_kde_gs", __kde_lr(), "mul", pg="kde", ),
|
||||||
|
G("m3w_kde_gs", __kde_lr(), "mul", pg="kde", cf=True),
|
||||||
]
|
]
|
||||||
# fmt: on
|
# fmt: on
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue