diff --git a/quacc/evaluation/baseline.py b/quacc/evaluation/baseline.py index eca0b81..b65ae80 100644 --- a/quacc/evaluation/baseline.py +++ b/quacc/evaluation/baseline.py @@ -17,6 +17,7 @@ import baselines.impweight as iw import baselines.mandoline as mandolib import baselines.rca as rcalib from baselines.utils import clone_fit +from quacc.environment import env from .report import EvaluationReport @@ -169,7 +170,7 @@ def doc( predict_method="predict_proba", ): c_model_predict = getattr(c_model, predict_method) - val1, val2 = validation.split_stratified(train_prop=0.5, random_state=0) + val1, val2 = validation.split_stratified(train_prop=0.5, random_state=env._R_SEED) val1_probs = c_model_predict(val1.X) val1_mc = np.max(val1_probs, axis=-1) val1_preds = np.argmax(val1_probs, axis=-1) @@ -281,7 +282,7 @@ def rca_star( """elsahar19""" c_model_predict = getattr(c_model, predict_method) validation1, validation2 = validation.split_stratified( - train_prop=0.5, random_state=0 + train_prop=0.5, random_state=env._R_SEED ) val1_pred = c_model_predict(validation1.X) c_model1 = clone_fit(c_model, validation1.X, val1_pred) @@ -318,7 +319,7 @@ def gde( predict_method="predict", ) -> EvaluationReport: c_model_predict = getattr(c_model, predict_method) - val1, val2 = validation.split_stratified(train_prop=0.5, random_state=0) + val1, val2 = validation.split_stratified(train_prop=0.5, random_state=env._R_SEED) c_model1 = clone_fit(c_model, val1.X, val1.y) c_model1_predict = getattr(c_model1, predict_method) c_model2 = clone_fit(c_model, val2.X, val2.y) diff --git a/quacc/evaluation/method.py b/quacc/evaluation/method.py index b866d4f..892b7d4 100644 --- a/quacc/evaluation/method.py +++ b/quacc/evaluation/method.py @@ -8,6 +8,7 @@ from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC import quacc as qc +from quacc.environment import env from quacc.evaluation.report import EvaluationReport from quacc.method.base import BQAE, MCAE, BaseAccuracyEstimator from quacc.method.model_selection import GridSearchAE @@ -97,7 +98,7 @@ class EvaluationMethodGridSearch(EvaluationMethod): pg: str = "sld" def __call__(self, c_model, validation, protocol) -> EvaluationReport: - v_train, v_val = validation.split_stratified(0.6, random_state=0) + v_train, v_val = validation.split_stratified(0.6, random_state=env._R_SEED) __grid = _param_grid.get(self.pg, {}) est = GridSearchAE( model=self.get_est(c_model), @@ -122,7 +123,7 @@ def __sld_lr(): def __kde_lr(): - return KDEy(LogisticRegression()) + return KDEy(LogisticRegression(), random_state=env._R_SEED) def __sld_lsvc(): diff --git a/quacc/method/model_selection.py b/quacc/method/model_selection.py index 36cbcac..c7c49c9 100644 --- a/quacc/method/model_selection.py +++ b/quacc/method/model_selection.py @@ -13,6 +13,7 @@ from sklearn.base import BaseEstimator import quacc as qc import quacc.error from quacc.data import ExtendedCollection, ExtendedData +from quacc.environment import env from quacc.evaluation import evaluate from quacc.logger import SubLogger from quacc.method.base import ( @@ -251,7 +252,7 @@ class MCAEgsq(MultiClassAccuracyEstimator): def fit(self, train: LabelledCollection): self.e_train = self.extend(train) - t_train, t_val = self.e_train.split_stratified(0.6, random_state=0) + t_train, t_val = self.e_train.split_stratified(0.6, random_state=env._R_SEED) self.quantifier = GridSearchQ( deepcopy(self.quantifier), param_grid=self.param_grid, @@ -304,7 +305,7 @@ class BQAEgsq(BinaryQuantifierAccuracyEstimator): self.quantifiers = [] for e_train in self.e_trains: - t_train, t_val = e_train.split_stratified(0.6, random_state=0) + t_train, t_val = e_train.split_stratified(0.6, random_state=env._R_SEED) quantifier = GridSearchQ( model=deepcopy(self.quantifier), param_grid=self.param_grid,