From 9f6333efb5337d7b90140f663e844a3e1106ea15 Mon Sep 17 00:00:00 2001 From: Lorenzo Volpi Date: Sat, 11 Nov 2023 18:46:27 +0100 Subject: [PATCH] mul3w implemented --- .gitignore | 1 + .vscode/launch.json | 2 +- TODO.md | 6 +- conf.yaml | 13 +- poetry.lock | 1084 +++++++++++++++++- pyproject.toml | 6 + qcpanel/__pycache__/__init__.cpython-310.pyc | Bin 143 -> 0 bytes qcpanel/__pycache__/run.cpython-310.pyc | Bin 4954 -> 0 bytes quacc.log | 598 ++++++++++ quacc/data.py | 59 +- quacc/evaluation/method.py | 40 + quacc/evaluation/report.py | 187 ++- quacc/main.py | 1 + quacc/method/base.py | 31 +- quacc/method/model_selection.py | 1 + quacc/plot.py | 16 +- remote.py | 17 +- 17 files changed, 1973 insertions(+), 89 deletions(-) delete mode 100644 qcpanel/__pycache__/__init__.cpython-310.pyc delete mode 100644 qcpanel/__pycache__/run.cpython-310.pyc diff --git a/.gitignore b/.gitignore index f3f0fe6..15eb46e 100644 --- a/.gitignore +++ b/.gitignore @@ -5,6 +5,7 @@ quavenv/* __pycache__/* baselines/__pycache__/* baselines/densratio/__pycache__/* +qcpanel/__pycache__/* quacc/__pycache__/* quacc/evaluation/__pycache__/* quacc/method/__pycache__/* diff --git a/.vscode/launch.json b/.vscode/launch.json index abb8d43..415517c 100644 --- a/.vscode/launch.json +++ b/.vscode/launch.json @@ -9,7 +9,7 @@ "name": "main", "type": "python", "request": "launch", - "program": "C:\\Users\\Lorenzo Volpi\\source\\tesi\\quacc\\main.py", + "program": "~/source/tesi/quacc/main.py", "console": "integratedTerminal", "justMyCode": true }, diff --git a/TODO.md b/TODO.md index 8b0af9f..015b6e7 100644 --- a/TODO.md +++ b/TODO.md @@ -42,7 +42,7 @@ - [x] testare anche su imbd - [x] aggiungere esecuzione remota via ssh -- [ ] testare confidence con sia max_conf che exntropy +- [x] testare confidence con sia max_conf che exntropy +- [x] implementare mul3 - [ ] rivedere nuove baselines -- [ ] importare nuovi dataset -- [ ] implementare mul3 \ No newline at end of file +- [ ] importare nuovi dataset \ No newline at end of file diff --git a/conf.yaml b/conf.yaml index 8501a97..f1e9940 100644 --- a/conf.yaml +++ b/conf.yaml @@ -5,16 +5,13 @@ debug_conf: &debug_conf DATASET_N_PREVS: 9 confs: - - DATASET_NAME: rcv1 - DATASET_TARGET: CCAT + - DATASET_NAME: imdb plot_confs: - debug: + debug_gs: PLOT_ESTIMATORS: - - binc_sld - - binmc_sld - - binne_sld - - bin_sld + - mul_sld + - mul3w_sld - atc_mc PLOT_STDEV: true @@ -224,4 +221,4 @@ main_conf: &main_conf - atc_ne - doc_feat -exec: *mc_conf \ No newline at end of file +exec: *debug_conf \ No newline at end of file diff --git a/poetry.lock b/poetry.lock index cec1eb3..e3946d0 100644 --- a/poetry.lock +++ b/poetry.lock @@ -15,6 +15,35 @@ numpy = ">=1.9" scikit-learn = ">=0.20.0" scipy = ">=1.1.0" +[[package]] +name = "appnope" +version = "0.1.3" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = "*" +files = [ + {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, + {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + [[package]] name = "bcrypt" version = "4.0.1" @@ -49,6 +78,57 @@ files = [ tests = ["pytest (>=3.2.1,!=3.3.0)"] typecheck = ["mypy"] +[[package]] +name = "bleach" +version = "6.1.0" +description = "An easy safelist-based HTML-sanitizing tool." +optional = false +python-versions = ">=3.8" +files = [ + {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"}, + {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"}, +] + +[package.dependencies] +six = ">=1.9.0" +webencodings = "*" + +[package.extras] +css = ["tinycss2 (>=1.1.0,<1.3)"] + +[[package]] +name = "bokeh" +version = "3.3.1" +description = "Interactive plots and applications in the browser from Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "bokeh-3.3.1-py3-none-any.whl", hash = "sha256:783fb503d80306fb1e3c06e9c775d98675bf9e07514a776d7109178798e85683"}, + {file = "bokeh-3.3.1.tar.gz", hash = "sha256:2a7b3702d7e9f03ef4cd801b02b7380196c70cff2773859bcb84fa565218955c"}, +] + +[package.dependencies] +contourpy = ">=1" +Jinja2 = ">=2.9" +numpy = ">=1.16" +packaging = ">=16.8" +pandas = ">=1.2" +pillow = ">=7.1.0" +PyYAML = ">=3.10" +tornado = ">=5.1" +xyzservices = ">=2021.09.1" + +[[package]] +name = "certifi" +version = "2023.7.22" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2023.7.22-py3-none-any.whl", hash = "sha256:92d6037539857d8206b8f6ae472e8b77db8058fec5937a1ef3f54304089edbb9"}, + {file = "certifi-2023.7.22.tar.gz", hash = "sha256:539cc1d13202e33ca466e88b2807e29f4c13049d6d87031a3c110744495cb082"}, +] + [[package]] name = "cffi" version = "1.16.0" @@ -113,6 +193,105 @@ files = [ [package.dependencies] pycparser = "*" +[[package]] +name = "charset-normalizer" +version = "3.3.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +] + [[package]] name = "colorama" version = "0.4.6" @@ -124,6 +303,23 @@ files = [ {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, ] +[[package]] +name = "comm" +version = "0.2.0" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.0-py3-none-any.whl", hash = "sha256:2da8d9ebb8dd7bfc247adaff99f24dce705638a8042b85cb995066793e391001"}, + {file = "comm-0.2.0.tar.gz", hash = "sha256:a517ea2ca28931c7007a7a99c562a0fa5883cfb48963140cf642c41c948498be"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + [[package]] name = "contourpy" version = "1.2.0" @@ -314,6 +510,44 @@ files = [ docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] tests = ["pytest", "pytest-cov", "pytest-xdist"] +[[package]] +name = "debugpy" +version = "1.8.0" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.0-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7fb95ca78f7ac43393cd0e0f2b6deda438ec7c5e47fa5d38553340897d2fbdfb"}, + {file = "debugpy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef9ab7df0b9a42ed9c878afd3eaaff471fce3fa73df96022e1f5c9f8f8c87ada"}, + {file = "debugpy-1.8.0-cp310-cp310-win32.whl", hash = "sha256:a8b7a2fd27cd9f3553ac112f356ad4ca93338feadd8910277aff71ab24d8775f"}, + {file = "debugpy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:5d9de202f5d42e62f932507ee8b21e30d49aae7e46d5b1dd5c908db1d7068637"}, + {file = "debugpy-1.8.0-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:ef54404365fae8d45cf450d0544ee40cefbcb9cb85ea7afe89a963c27028261e"}, + {file = "debugpy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60009b132c91951354f54363f8ebdf7457aeb150e84abba5ae251b8e9f29a8a6"}, + {file = "debugpy-1.8.0-cp311-cp311-win32.whl", hash = "sha256:8cd0197141eb9e8a4566794550cfdcdb8b3db0818bdf8c49a8e8f8053e56e38b"}, + {file = "debugpy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:a64093656c4c64dc6a438e11d59369875d200bd5abb8f9b26c1f5f723622e153"}, + {file = "debugpy-1.8.0-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:b05a6b503ed520ad58c8dc682749113d2fd9f41ffd45daec16e558ca884008cd"}, + {file = "debugpy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c6fb41c98ec51dd010d7ed650accfd07a87fe5e93eca9d5f584d0578f28f35f"}, + {file = "debugpy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:46ab6780159eeabb43c1495d9c84cf85d62975e48b6ec21ee10c95767c0590aa"}, + {file = "debugpy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:bdc5ef99d14b9c0fcb35351b4fbfc06ac0ee576aeab6b2511702e5a648a2e595"}, + {file = "debugpy-1.8.0-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:61eab4a4c8b6125d41a34bad4e5fe3d2cc145caecd63c3fe953be4cc53e65bf8"}, + {file = "debugpy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:125b9a637e013f9faac0a3d6a82bd17c8b5d2c875fb6b7e2772c5aba6d082332"}, + {file = "debugpy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:57161629133113c97b387382045649a2b985a348f0c9366e22217c87b68b73c6"}, + {file = "debugpy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:e3412f9faa9ade82aa64a50b602544efcba848c91384e9f93497a458767e6926"}, + {file = "debugpy-1.8.0-py2.py3-none-any.whl", hash = "sha256:9c9b0ac1ce2a42888199df1a1906e45e6f3c9555497643a85e0bf2406e3ffbc4"}, + {file = "debugpy-1.8.0.zip", hash = "sha256:12af2c55b419521e33d5fb21bd022df0b5eb267c3e178f1d374a63a2a6bdccd0"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + [[package]] name = "exceptiongroup" version = "1.1.3" @@ -328,6 +562,20 @@ files = [ [package.extras] test = ["pytest (>=6)"] +[[package]] +name = "executing" +version = "2.0.1" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.5" +files = [ + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + [[package]] name = "fonttools" version = "4.44.0" @@ -393,6 +641,17 @@ ufo = ["fs (>=2.2.0,<3)"] unicode = ["unicodedata2 (>=15.1.0)"] woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] +[[package]] +name = "idna" +version = "3.4" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.5" +files = [ + {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"}, + {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, +] + [[package]] name = "iniconfig" version = "2.0.0" @@ -404,6 +663,169 @@ files = [ {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, ] +[[package]] +name = "ipykernel" +version = "6.26.0" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.26.0-py3-none-any.whl", hash = "sha256:3ba3dc97424b87b31bb46586b5167b3161b32d7820b9201a9e698c71e271602c"}, + {file = "ipykernel-6.26.0.tar.gz", hash = "sha256:553856658eb8430bbe9653ea041a41bff63e9606fc4628873fc92a6cf3abd404"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=20" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipympl" +version = "0.9.3" +description = "Matplotlib Jupyter Extension" +optional = false +python-versions = "*" +files = [ + {file = "ipympl-0.9.3-py2.py3-none-any.whl", hash = "sha256:d113cd55891bafe9b27ef99b6dd111a87beb6bb2ae550c404292272103be8013"}, + {file = "ipympl-0.9.3.tar.gz", hash = "sha256:49bab75c05673a6881d1aaec5d8ac81d4624f73d292d154c5fb7096f10236a2b"}, +] + +[package.dependencies] +ipython = "<9" +ipython-genutils = "*" +ipywidgets = ">=7.6.0,<9" +matplotlib = ">=3.4.0,<4" +numpy = "*" +pillow = "*" +traitlets = "<6" + +[package.extras] +docs = ["Sphinx (>=1.5)", "myst-nb", "sphinx-book-theme", "sphinx-copybutton", "sphinx-thebe", "sphinx-togglebutton"] + +[[package]] +name = "ipython" +version = "8.17.2" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.9" +files = [ + {file = "ipython-8.17.2-py3-none-any.whl", hash = "sha256:1e4d1d666a023e3c93585ba0d8e962867f7a111af322efff6b9c58062b3e5444"}, + {file = "ipython-8.17.2.tar.gz", hash = "sha256:126bb57e1895594bb0d91ea3090bbd39384f6fe87c3d57fd558d0670f50339bb"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" + +[package.extras] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] + +[[package]] +name = "ipython-genutils" +version = "0.2.0" +description = "Vestigial utilities from IPython" +optional = false +python-versions = "*" +files = [ + {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"}, + {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"}, +] + +[[package]] +name = "ipywidgets" +version = "8.1.1" +description = "Jupyter interactive widgets" +optional = false +python-versions = ">=3.7" +files = [ + {file = "ipywidgets-8.1.1-py3-none-any.whl", hash = "sha256:2b88d728656aea3bbfd05d32c747cfd0078f9d7e159cf982433b58ad717eed7f"}, + {file = "ipywidgets-8.1.1.tar.gz", hash = "sha256:40211efb556adec6fa450ccc2a77d59ca44a060f4f9f136833df59c9f538e6e8"}, +] + +[package.dependencies] +comm = ">=0.1.3" +ipython = ">=6.1.0" +jupyterlab-widgets = ">=3.0.9,<3.1.0" +traitlets = ">=4.3.1" +widgetsnbextension = ">=4.0.9,<4.1.0" + +[package.extras] +test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] + +[[package]] +name = "ipywidgets-bokeh" +version = "1.5.0" +description = "Allows embedding of Jupyter widgets in Bokeh layouts." +optional = false +python-versions = ">=3.9" +files = [ + {file = "ipywidgets_bokeh-1.5.0-py3-none-any.whl", hash = "sha256:b50a2bacf5274792bfee731795e1ff939636160f61682bd555d6d19f7118f3cd"}, + {file = "ipywidgets_bokeh-1.5.0.tar.gz", hash = "sha256:c91d8c0d6199a79d508b9f7e34bcd5620b06b3ae93d212401c1b52c2b0162ca7"}, +] + +[package.dependencies] +bokeh = "==3.*" +ipykernel = ">=6.dev0,<6.18.0 || >6.18.0,<7.dev0" +ipywidgets = "==8.*" + +[package.extras] +dev = ["anywidget (>=0.3.0)", "panel (>=1.0.4)", "pytest (>=7.3.1)", "pytest-cov (>=4.1.0)", "pytest-playwright (>=0.3.3)"] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + [[package]] name = "jinja2" version = "3.1.2" @@ -432,6 +854,59 @@ files = [ {file = "joblib-1.3.2.tar.gz", hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1"}, ] +[[package]] +name = "jupyter-client" +version = "8.6.0" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.0-py3-none-any.whl", hash = "sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99"}, + {file = "jupyter_client-8.6.0.tar.gz", hash = "sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7"}, +] + +[package.dependencies] +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.5.0" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.5.0-py3-none-any.whl", hash = "sha256:e11e02cd8ae0a9de5c6c44abf5727df9f2581055afe00b22183f621ba3585805"}, + {file = "jupyter_core-5.5.0.tar.gz", hash = "sha256:880b86053bf298a8724994f95e99b99130659022a4f7f45f563084b6223861d3"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "jupyterlab-widgets" +version = "3.0.9" +description = "Jupyter interactive widgets for JupyterLab" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jupyterlab_widgets-3.0.9-py3-none-any.whl", hash = "sha256:3cf5bdf5b897bf3bccf1c11873aa4afd776d7430200f765e0686bd352487b58d"}, + {file = "jupyterlab_widgets-3.0.9.tar.gz", hash = "sha256:6005a4e974c7beee84060fdfba341a3218495046de8ae3ec64888e5fe19fdb4c"}, +] + [[package]] name = "kiwisolver" version = "1.4.5" @@ -545,6 +1020,26 @@ files = [ {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, ] +[[package]] +name = "linkify-it-py" +version = "2.0.2" +description = "Links recognition library with FULL unicode support." +optional = false +python-versions = ">=3.7" +files = [ + {file = "linkify-it-py-2.0.2.tar.gz", hash = "sha256:19f3060727842c254c808e99d465c80c49d2c7306788140987a1a7a29b0d6ad2"}, + {file = "linkify_it_py-2.0.2-py3-none-any.whl", hash = "sha256:a3a24428f6c96f27370d7fe61d2ac0be09017be5190d68d8658233171f1b6541"}, +] + +[package.dependencies] +uc-micro-py = "*" + +[package.extras] +benchmark = ["pytest", "pytest-benchmark"] +dev = ["black", "flake8", "isort", "pre-commit", "pyproject-flake8"] +doc = ["myst-parser", "sphinx", "sphinx-book-theme"] +test = ["coverage", "pytest", "pytest-cov"] + [[package]] name = "logging" version = "0.4.9.6" @@ -555,6 +1050,45 @@ files = [ {file = "logging-0.4.9.6.tar.gz", hash = "sha256:26f6b50773f085042d301085bd1bf5d9f3735704db9f37c1ce6d8b85c38f2417"}, ] +[[package]] +name = "markdown" +version = "3.5.1" +description = "Python implementation of John Gruber's Markdown." +optional = false +python-versions = ">=3.8" +files = [ + {file = "Markdown-3.5.1-py3-none-any.whl", hash = "sha256:5874b47d4ee3f0b14d764324d2c94c03ea66bee56f2d929da9f2508d65e722dc"}, + {file = "Markdown-3.5.1.tar.gz", hash = "sha256:b65d7beb248dc22f2e8a31fb706d93798093c308dc1aba295aedeb9d41a813bd"}, +] + +[package.extras] +docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"] +testing = ["coverage", "pyyaml"] + +[[package]] +name = "markdown-it-py" +version = "3.0.0" +description = "Python port of markdown-it. Markdown parsing, done right!" +optional = false +python-versions = ">=3.8" +files = [ + {file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"}, + {file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"}, +] + +[package.dependencies] +mdurl = ">=0.1,<1.0" + +[package.extras] +benchmarking = ["psutil", "pytest", "pytest-benchmark"] +code-style = ["pre-commit (>=3.0,<4.0)"] +compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"] +linkify = ["linkify-it-py (>=1,<3)"] +plugins = ["mdit-py-plugins"] +profiling = ["gprof2dot"] +rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"] +testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] + [[package]] name = "markupsafe" version = "2.1.3" @@ -672,6 +1206,61 @@ pillow = ">=8" pyparsing = ">=2.3.1" python-dateutil = ">=2.7" +[[package]] +name = "matplotlib-inline" +version = "0.1.6" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.5" +files = [ + {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, + {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mdit-py-plugins" +version = "0.4.0" +description = "Collection of plugins for markdown-it-py" +optional = false +python-versions = ">=3.8" +files = [ + {file = "mdit_py_plugins-0.4.0-py3-none-any.whl", hash = "sha256:b51b3bb70691f57f974e257e367107857a93b36f322a9e6d44ca5bf28ec2def9"}, + {file = "mdit_py_plugins-0.4.0.tar.gz", hash = "sha256:d8ab27e9aed6c38aa716819fedfde15ca275715955f8a185a8e1cf90fb1d2c1b"}, +] + +[package.dependencies] +markdown-it-py = ">=1.0.0,<4.0.0" + +[package.extras] +code-style = ["pre-commit"] +rtd = ["myst-parser", "sphinx-book-theme"] +testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] + +[[package]] +name = "mdurl" +version = "0.1.2" +description = "Markdown URL utilities" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, + {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, +] + +[[package]] +name = "nest-asyncio" +version = "1.5.8" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.5.8-py3-none-any.whl", hash = "sha256:accda7a339a70599cb08f9dd09a67e0c2ef8d8d6f4c07f96ab203f2ae254e48d"}, + {file = "nest_asyncio-1.5.8.tar.gz", hash = "sha256:25aa2ca0d2a5b5531956b9e273b45cf664cae2b145101d73b86b199978d48fdb"}, +] + [[package]] name = "numpy" version = "1.25.2" @@ -842,6 +1431,64 @@ sql-other = ["SQLAlchemy (>=1.4.36)"] test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] xml = ["lxml (>=4.8.0)"] +[[package]] +name = "panel" +version = "1.3.1" +description = "The powerful data exploration & web app framework for Python." +optional = false +python-versions = ">=3.9" +files = [ + {file = "panel-1.3.1-py2.py3-none-any.whl", hash = "sha256:9192a798b77b998c294dbfc342f89b2f7d6171aae4995468a88a6f23c8d06a53"}, + {file = "panel-1.3.1.tar.gz", hash = "sha256:d50abe3361239516b265444fef3a3c9f2faa0b0cfb671849c767829b857c7a5f"}, +] + +[package.dependencies] +bleach = "*" +bokeh = ">=3.2.0,<3.4.0" +linkify-it-py = "*" +markdown = "*" +markdown-it-py = "*" +mdit-py-plugins = "*" +pandas = ">=1.2" +param = ">=2.0.0,<3.0" +pyviz-comms = ">=0.7.4" +requests = "*" +tqdm = ">=4.48.0" +typing-extensions = "*" +xyzservices = ">=2021.09.1" + +[package.extras] +all = ["aiohttp", "altair", "anywidget", "channels", "croniter", "datashader", "diskcache", "django (<4)", "fastparquet", "flake8", "flaky", "folium", "graphviz", "holoviews (>=1.16.0)", "hvplot", "ipyleaflet", "ipympl", "ipython (>=7.0)", "ipyvolume", "ipyvuetify", "ipywidgets", "ipywidgets-bokeh", "jupyter-bokeh (>=3.0.7)", "jupyter-server", "jupyterlab", "lxml", "matplotlib", "nbsite (==0.8.2)", "nbval", "networkx (>=2.5)", "numba (<0.58)", "numpy", "pandas (<2.1.0)", "pandas (>=1.3)", "parameterized", "pillow", "playwright", "plotly", "plotly (>=4.0)", "pre-commit", "psutil", "pydeck", "pygraphviz", "pyinstrument (>=4.0)", "pytest", "pytest-asyncio (<0.22)", "pytest-cov", "pytest-playwright", "pytest-xdist", "python-graphviz", "pyvista", "reacton", "scikit-image", "scikit-learn", "scipy", "seaborn", "streamz", "twine", "vega-datasets", "vtk", "xarray", "xgboost"] +all-pip = ["aiohttp", "altair", "anywidget", "channels", "croniter", "datashader", "diskcache", "django (<4)", "fastparquet", "flake8", "flaky", "folium", "graphviz", "holoviews (>=1.16.0)", "hvplot", "ipyleaflet", "ipympl", "ipython (>=7.0)", "ipyvolume", "ipyvuetify", "ipywidgets", "ipywidgets-bokeh", "jupyter-bokeh (>=3.0.7)", "jupyter-server", "jupyterlab", "lxml", "matplotlib", "nbsite (==0.8.2)", "nbval", "networkx (>=2.5)", "numba (<0.58)", "numpy", "pandas (<2.1.0)", "pandas (>=1.3)", "parameterized", "pillow", "playwright", "plotly", "plotly (>=4.0)", "pre-commit", "psutil", "pydeck", "pyinstrument (>=4.0)", "pytest", "pytest-asyncio (<0.22)", "pytest-cov", "pytest-playwright", "pytest-xdist", "pyvista", "reacton", "scikit-image", "scikit-learn", "scipy", "seaborn", "streamz", "twine", "vega-datasets", "vtk", "xarray", "xgboost"] +build = ["bleach", "bokeh (>=3.3.0,<3.4.0)", "cryptography (<39)", "markdown", "packaging", "param (>=2.0.0)", "pyviz-comms (>=0.7.4)", "requests", "setuptools (>=42)", "tqdm (>=4.48.0)", "urllib3 (<2.0)"] +doc = ["holoviews (>=1.16.0)", "jupyterlab", "lxml", "matplotlib", "nbsite (==0.8.2)", "pandas (<2.1.0)", "pillow", "plotly"] +examples = ["aiohttp", "altair", "channels", "croniter", "datashader", "django (<4)", "fastparquet", "folium", "graphviz", "holoviews (>=1.16.0)", "hvplot", "ipyleaflet", "ipympl", "ipyvolume", "ipyvuetify", "ipywidgets", "ipywidgets-bokeh", "jupyter-bokeh (>=3.0.7)", "networkx (>=2.5)", "plotly (>=4.0)", "pydeck", "pygraphviz", "pyinstrument (>=4.0)", "python-graphviz", "pyvista", "reacton", "scikit-image", "scikit-learn", "seaborn", "streamz", "vega-datasets", "vtk", "xarray", "xgboost"] +recommended = ["holoviews (>=1.16.0)", "jupyterlab", "matplotlib", "pillow", "plotly"] +tests = ["altair", "anywidget", "diskcache", "flake8", "flaky", "folium", "holoviews (>=1.16.0)", "ipympl", "ipython (>=7.0)", "ipyvuetify", "ipywidgets-bokeh", "nbval", "numba (<0.58)", "numpy", "pandas (>=1.3)", "parameterized", "pre-commit", "psutil", "pytest", "pytest-asyncio (<0.22)", "pytest-cov", "pytest-xdist", "reacton", "scipy", "twine"] +tests-core = ["altair", "anywidget", "diskcache", "flake8", "flaky", "folium", "holoviews (>=1.16.0)", "ipython (>=7.0)", "nbval", "numpy", "pandas (>=1.3)", "parameterized", "pre-commit", "psutil", "pytest", "pytest-asyncio (<0.22)", "pytest-cov", "pytest-xdist", "scipy"] +ui = ["jupyter-server", "playwright", "pytest-playwright"] + +[[package]] +name = "param" +version = "2.0.1" +description = "Make your Python code clearer and more reliable by declaring Parameters." +optional = false +python-versions = ">=3.8" +files = [ + {file = "param-2.0.1-py3-none-any.whl", hash = "sha256:4bfc94c0e4127626fa833e30c71c91ea73e7675b80c26dbdd4a6e5a8f6dc46db"}, + {file = "param-2.0.1.tar.gz", hash = "sha256:7943a04607822efd46e96e1827dc5fa929a2fc3b1fe9fc7b7dca7d17a8031a5b"}, +] + +[package.extras] +all = ["param[doc]", "param[lint]", "param[tests-full]"] +doc = ["nbsite (==0.8.2)", "param[examples]", "sphinx-remove-toctrees"] +examples = ["aiohttp", "pandas", "panel"] +lint = ["flake8", "pre-commit"] +tests = ["coverage[toml]", "pytest", "pytest-asyncio"] +tests-deser = ["odfpy", "openpyxl", "pyarrow", "tables", "xlrd"] +tests-examples = ["nbval", "param[examples]", "pytest", "pytest-asyncio", "pytest-xdist"] +tests-full = ["cloudpickle", "gmpy", "ipython", "jsonschema", "nest-asyncio", "numpy", "pandas", "param[tests-deser]", "param[tests-examples]", "param[tests]"] + [[package]] name = "paramiko" version = "3.3.1" @@ -863,6 +1510,35 @@ all = ["gssapi (>=1.4.1)", "invoke (>=2.0)", "pyasn1 (>=0.1.7)", "pywin32 (>=2.1 gssapi = ["gssapi (>=1.4.1)", "pyasn1 (>=0.1.7)", "pywin32 (>=2.1.8)"] invoke = ["invoke (>=2.0)"] +[[package]] +name = "parso" +version = "0.8.3" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, + {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, +] + +[package.extras] +qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] +testing = ["docopt", "pytest (<6.0.0)"] + +[[package]] +name = "pexpect" +version = "4.8.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.8.0-py2.py3-none-any.whl", hash = "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937"}, + {file = "pexpect-4.8.0.tar.gz", hash = "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + [[package]] name = "pillow" version = "10.1.0" @@ -930,6 +1606,21 @@ files = [ docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +[[package]] +name = "platformdirs" +version = "4.0.0" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +optional = false +python-versions = ">=3.7" +files = [ + {file = "platformdirs-4.0.0-py3-none-any.whl", hash = "sha256:118c954d7e949b35437270383a3f2531e99dd93cf7ce4dc8340d3356d30f173b"}, + {file = "platformdirs-4.0.0.tar.gz", hash = "sha256:cb633b2bcf10c51af60beb0ab06d2f1d69064b43abf4c185ca6b28865f3f9731"}, +] + +[package.extras] +docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"] + [[package]] name = "pluggy" version = "1.3.0" @@ -945,6 +1636,73 @@ files = [ dev = ["pre-commit", "tox"] testing = ["pytest", "pytest-benchmark"] +[[package]] +name = "prompt-toolkit" +version = "3.0.40" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.40-py3-none-any.whl", hash = "sha256:99ba3dfb23d5b5af89712f89e60a5f3d9b8b67a9482ca377c5771d0e9047a34b"}, + {file = "prompt_toolkit-3.0.40.tar.gz", hash = "sha256:a371c06bb1d66cd499fecd708e50c0b6ae00acba9822ba33c586e2f16d1b739e"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "5.9.6" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" +files = [ + {file = "psutil-5.9.6-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:fb8a697f11b0f5994550555fcfe3e69799e5b060c8ecf9e2f75c69302cc35c0d"}, + {file = "psutil-5.9.6-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:91ecd2d9c00db9817a4b4192107cf6954addb5d9d67a969a4f436dbc9200f88c"}, + {file = "psutil-5.9.6-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:10e8c17b4f898d64b121149afb136c53ea8b68c7531155147867b7b1ac9e7e28"}, + {file = "psutil-5.9.6-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:18cd22c5db486f33998f37e2bb054cc62fd06646995285e02a51b1e08da97017"}, + {file = "psutil-5.9.6-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:ca2780f5e038379e520281e4c032dddd086906ddff9ef0d1b9dcf00710e5071c"}, + {file = "psutil-5.9.6-cp27-none-win32.whl", hash = "sha256:70cb3beb98bc3fd5ac9ac617a327af7e7f826373ee64c80efd4eb2856e5051e9"}, + {file = "psutil-5.9.6-cp27-none-win_amd64.whl", hash = "sha256:51dc3d54607c73148f63732c727856f5febec1c7c336f8f41fcbd6315cce76ac"}, + {file = "psutil-5.9.6-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c69596f9fc2f8acd574a12d5f8b7b1ba3765a641ea5d60fb4736bf3c08a8214a"}, + {file = "psutil-5.9.6-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:92e0cc43c524834af53e9d3369245e6cc3b130e78e26100d1f63cdb0abeb3d3c"}, + {file = "psutil-5.9.6-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:748c9dd2583ed86347ed65d0035f45fa8c851e8d90354c122ab72319b5f366f4"}, + {file = "psutil-5.9.6-cp36-cp36m-win32.whl", hash = "sha256:3ebf2158c16cc69db777e3c7decb3c0f43a7af94a60d72e87b2823aebac3d602"}, + {file = "psutil-5.9.6-cp36-cp36m-win_amd64.whl", hash = "sha256:ff18b8d1a784b810df0b0fff3bcb50ab941c3b8e2c8de5726f9c71c601c611aa"}, + {file = "psutil-5.9.6-cp37-abi3-win32.whl", hash = "sha256:a6f01f03bf1843280f4ad16f4bde26b817847b4c1a0db59bf6419807bc5ce05c"}, + {file = "psutil-5.9.6-cp37-abi3-win_amd64.whl", hash = "sha256:6e5fb8dc711a514da83098bc5234264e551ad980cec5f85dabf4d38ed6f15e9a"}, + {file = "psutil-5.9.6-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:daecbcbd29b289aac14ece28eca6a3e60aa361754cf6da3dfb20d4d32b6c7f57"}, + {file = "psutil-5.9.6.tar.gz", hash = "sha256:e4b92ddcd7dd4cdd3f900180ea1e104932c7bce234fb88976e2a3b296441225a"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.2" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, + {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, +] + +[package.extras] +tests = ["pytest"] + [[package]] name = "pyarrow" version = "14.0.1" @@ -1004,6 +1762,20 @@ files = [ {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, ] +[[package]] +name = "pygments" +version = "2.16.1" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.7" +files = [ + {file = "Pygments-2.16.1-py3-none-any.whl", hash = "sha256:13fc09fa63bc8d8671a6d247e1eb303c4b343eaee81d861f3404db2935653692"}, + {file = "Pygments-2.16.1.tar.gz", hash = "sha256:1daff0494820c69bc8941e407aa20f577374ee88364ee10a98fdbe0aece96e29"}, +] + +[package.extras] +plugins = ["importlib-metadata"] + [[package]] name = "pylance" version = "0.5.10" @@ -1147,6 +1919,48 @@ files = [ {file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"}, ] +[[package]] +name = "pyviz-comms" +version = "3.0.0" +description = "A JupyterLab extension for rendering HoloViz content." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyviz_comms-3.0.0-py3-none-any.whl", hash = "sha256:91c967151b1e4d436c458c147a31991a42fbe7567e49176e4eb5b8dc8e20f1ff"}, + {file = "pyviz_comms-3.0.0.tar.gz", hash = "sha256:f4ca91e4157a64e3abed7cc249e60b9a8d2532f8832f1cb075914d19337d2ba6"}, +] + +[package.dependencies] +param = "*" + +[package.extras] +all = ["pyviz-comms[build]", "pyviz-comms[tests]"] +build = ["jupyterlab (>=4.0,<5.0)", "keyring", "rfc3986", "setuptools (>=40.8.0)", "twine"] +tests = ["flake8", "pytest"] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + [[package]] name = "pyyaml" version = "6.0.1" @@ -1206,6 +2020,111 @@ files = [ {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, ] +[[package]] +name = "pyzmq" +version = "25.1.1" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.6" +files = [ + {file = "pyzmq-25.1.1-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:381469297409c5adf9a0e884c5eb5186ed33137badcbbb0560b86e910a2f1e76"}, + {file = "pyzmq-25.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:955215ed0604dac5b01907424dfa28b40f2b2292d6493445dd34d0dfa72586a8"}, + {file = "pyzmq-25.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:985bbb1316192b98f32e25e7b9958088431d853ac63aca1d2c236f40afb17c83"}, + {file = "pyzmq-25.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:afea96f64efa98df4da6958bae37f1cbea7932c35878b185e5982821bc883369"}, + {file = "pyzmq-25.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76705c9325d72a81155bb6ab48d4312e0032bf045fb0754889133200f7a0d849"}, + {file = "pyzmq-25.1.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:77a41c26205d2353a4c94d02be51d6cbdf63c06fbc1295ea57dad7e2d3381b71"}, + {file = "pyzmq-25.1.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:12720a53e61c3b99d87262294e2b375c915fea93c31fc2336898c26d7aed34cd"}, + {file = "pyzmq-25.1.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:57459b68e5cd85b0be8184382cefd91959cafe79ae019e6b1ae6e2ba8a12cda7"}, + {file = "pyzmq-25.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:292fe3fc5ad4a75bc8df0dfaee7d0babe8b1f4ceb596437213821f761b4589f9"}, + {file = "pyzmq-25.1.1-cp310-cp310-win32.whl", hash = "sha256:35b5ab8c28978fbbb86ea54958cd89f5176ce747c1fb3d87356cf698048a7790"}, + {file = "pyzmq-25.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:11baebdd5fc5b475d484195e49bae2dc64b94a5208f7c89954e9e354fc609d8f"}, + {file = "pyzmq-25.1.1-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:d20a0ddb3e989e8807d83225a27e5c2eb2260eaa851532086e9e0fa0d5287d83"}, + {file = "pyzmq-25.1.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e1c1be77bc5fb77d923850f82e55a928f8638f64a61f00ff18a67c7404faf008"}, + {file = "pyzmq-25.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d89528b4943d27029a2818f847c10c2cecc79fa9590f3cb1860459a5be7933eb"}, + {file = "pyzmq-25.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:90f26dc6d5f241ba358bef79be9ce06de58d477ca8485e3291675436d3827cf8"}, + {file = "pyzmq-25.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c2b92812bd214018e50b6380ea3ac0c8bb01ac07fcc14c5f86a5bb25e74026e9"}, + {file = "pyzmq-25.1.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:2f957ce63d13c28730f7fd6b72333814221c84ca2421298f66e5143f81c9f91f"}, + {file = "pyzmq-25.1.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:047a640f5c9c6ade7b1cc6680a0e28c9dd5a0825135acbd3569cc96ea00b2505"}, + {file = "pyzmq-25.1.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7f7e58effd14b641c5e4dec8c7dab02fb67a13df90329e61c869b9cc607ef752"}, + {file = "pyzmq-25.1.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c2910967e6ab16bf6fbeb1f771c89a7050947221ae12a5b0b60f3bca2ee19bca"}, + {file = "pyzmq-25.1.1-cp311-cp311-win32.whl", hash = "sha256:76c1c8efb3ca3a1818b837aea423ff8a07bbf7aafe9f2f6582b61a0458b1a329"}, + {file = "pyzmq-25.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:44e58a0554b21fc662f2712814a746635ed668d0fbc98b7cb9d74cb798d202e6"}, + {file = "pyzmq-25.1.1-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:e1ffa1c924e8c72778b9ccd386a7067cddf626884fd8277f503c48bb5f51c762"}, + {file = "pyzmq-25.1.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1af379b33ef33757224da93e9da62e6471cf4a66d10078cf32bae8127d3d0d4a"}, + {file = "pyzmq-25.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cff084c6933680d1f8b2f3b4ff5bbb88538a4aac00d199ac13f49d0698727ecb"}, + {file = "pyzmq-25.1.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e2400a94f7dd9cb20cd012951a0cbf8249e3d554c63a9c0cdfd5cbb6c01d2dec"}, + {file = "pyzmq-25.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d81f1ddae3858b8299d1da72dd7d19dd36aab654c19671aa8a7e7fb02f6638a"}, + {file = "pyzmq-25.1.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:255ca2b219f9e5a3a9ef3081512e1358bd4760ce77828e1028b818ff5610b87b"}, + {file = "pyzmq-25.1.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a882ac0a351288dd18ecae3326b8a49d10c61a68b01419f3a0b9a306190baf69"}, + {file = "pyzmq-25.1.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:724c292bb26365659fc434e9567b3f1adbdb5e8d640c936ed901f49e03e5d32e"}, + {file = "pyzmq-25.1.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ca1ed0bb2d850aa8471387882247c68f1e62a4af0ce9c8a1dbe0d2bf69e41fb"}, + {file = "pyzmq-25.1.1-cp312-cp312-win32.whl", hash = "sha256:b3451108ab861040754fa5208bca4a5496c65875710f76789a9ad27c801a0075"}, + {file = "pyzmq-25.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:eadbefd5e92ef8a345f0525b5cfd01cf4e4cc651a2cffb8f23c0dd184975d787"}, + {file = "pyzmq-25.1.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:db0b2af416ba735c6304c47f75d348f498b92952f5e3e8bff449336d2728795d"}, + {file = "pyzmq-25.1.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7c133e93b405eb0d36fa430c94185bdd13c36204a8635470cccc200723c13bb"}, + {file = "pyzmq-25.1.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:273bc3959bcbff3f48606b28229b4721716598d76b5aaea2b4a9d0ab454ec062"}, + {file = "pyzmq-25.1.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:cbc8df5c6a88ba5ae385d8930da02201165408dde8d8322072e3e5ddd4f68e22"}, + {file = "pyzmq-25.1.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:18d43df3f2302d836f2a56f17e5663e398416e9dd74b205b179065e61f1a6edf"}, + {file = "pyzmq-25.1.1-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:73461eed88a88c866656e08f89299720a38cb4e9d34ae6bf5df6f71102570f2e"}, + {file = "pyzmq-25.1.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:34c850ce7976d19ebe7b9d4b9bb8c9dfc7aac336c0958e2651b88cbd46682123"}, + {file = "pyzmq-25.1.1-cp36-cp36m-win32.whl", hash = "sha256:d2045d6d9439a0078f2a34b57c7b18c4a6aef0bee37f22e4ec9f32456c852c71"}, + {file = "pyzmq-25.1.1-cp36-cp36m-win_amd64.whl", hash = "sha256:458dea649f2f02a0b244ae6aef8dc29325a2810aa26b07af8374dc2a9faf57e3"}, + {file = "pyzmq-25.1.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:7cff25c5b315e63b07a36f0c2bab32c58eafbe57d0dce61b614ef4c76058c115"}, + {file = "pyzmq-25.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1579413ae492b05de5a6174574f8c44c2b9b122a42015c5292afa4be2507f28"}, + {file = "pyzmq-25.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3d0a409d3b28607cc427aa5c30a6f1e4452cc44e311f843e05edb28ab5e36da0"}, + {file = "pyzmq-25.1.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:21eb4e609a154a57c520e3d5bfa0d97e49b6872ea057b7c85257b11e78068222"}, + {file = "pyzmq-25.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:034239843541ef7a1aee0c7b2cb7f6aafffb005ede965ae9cbd49d5ff4ff73cf"}, + {file = "pyzmq-25.1.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f8115e303280ba09f3898194791a153862cbf9eef722ad8f7f741987ee2a97c7"}, + {file = "pyzmq-25.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:1a5d26fe8f32f137e784f768143728438877d69a586ddeaad898558dc971a5ae"}, + {file = "pyzmq-25.1.1-cp37-cp37m-win32.whl", hash = "sha256:f32260e556a983bc5c7ed588d04c942c9a8f9c2e99213fec11a031e316874c7e"}, + {file = "pyzmq-25.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:abf34e43c531bbb510ae7e8f5b2b1f2a8ab93219510e2b287a944432fad135f3"}, + {file = "pyzmq-25.1.1-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:87e34f31ca8f168c56d6fbf99692cc8d3b445abb5bfd08c229ae992d7547a92a"}, + {file = "pyzmq-25.1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c9c6c9b2c2f80747a98f34ef491c4d7b1a8d4853937bb1492774992a120f475d"}, + {file = "pyzmq-25.1.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5619f3f5a4db5dbb572b095ea3cb5cc035335159d9da950830c9c4db2fbb6995"}, + {file = "pyzmq-25.1.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5a34d2395073ef862b4032343cf0c32a712f3ab49d7ec4f42c9661e0294d106f"}, + {file = "pyzmq-25.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25f0e6b78220aba09815cd1f3a32b9c7cb3e02cb846d1cfc526b6595f6046618"}, + {file = "pyzmq-25.1.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:3669cf8ee3520c2f13b2e0351c41fea919852b220988d2049249db10046a7afb"}, + {file = "pyzmq-25.1.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:2d163a18819277e49911f7461567bda923461c50b19d169a062536fffe7cd9d2"}, + {file = "pyzmq-25.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:df27ffddff4190667d40de7beba4a950b5ce78fe28a7dcc41d6f8a700a80a3c0"}, + {file = "pyzmq-25.1.1-cp38-cp38-win32.whl", hash = "sha256:a382372898a07479bd34bda781008e4a954ed8750f17891e794521c3e21c2e1c"}, + {file = "pyzmq-25.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:52533489f28d62eb1258a965f2aba28a82aa747202c8fa5a1c7a43b5db0e85c1"}, + {file = "pyzmq-25.1.1-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:03b3f49b57264909aacd0741892f2aecf2f51fb053e7d8ac6767f6c700832f45"}, + {file = "pyzmq-25.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:330f9e188d0d89080cde66dc7470f57d1926ff2fb5576227f14d5be7ab30b9fa"}, + {file = "pyzmq-25.1.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:2ca57a5be0389f2a65e6d3bb2962a971688cbdd30b4c0bd188c99e39c234f414"}, + {file = "pyzmq-25.1.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d457aed310f2670f59cc5b57dcfced452aeeed77f9da2b9763616bd57e4dbaae"}, + {file = "pyzmq-25.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c56d748ea50215abef7030c72b60dd723ed5b5c7e65e7bc2504e77843631c1a6"}, + {file = "pyzmq-25.1.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:8f03d3f0d01cb5a018debeb412441996a517b11c5c17ab2001aa0597c6d6882c"}, + {file = "pyzmq-25.1.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:820c4a08195a681252f46926de10e29b6bbf3e17b30037bd4250d72dd3ddaab8"}, + {file = "pyzmq-25.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:17ef5f01d25b67ca8f98120d5fa1d21efe9611604e8eb03a5147360f517dd1e2"}, + {file = "pyzmq-25.1.1-cp39-cp39-win32.whl", hash = "sha256:04ccbed567171579ec2cebb9c8a3e30801723c575601f9a990ab25bcac6b51e2"}, + {file = "pyzmq-25.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:e61f091c3ba0c3578411ef505992d356a812fb200643eab27f4f70eed34a29ef"}, + {file = "pyzmq-25.1.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ade6d25bb29c4555d718ac6d1443a7386595528c33d6b133b258f65f963bb0f6"}, + {file = "pyzmq-25.1.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0c95ddd4f6e9fca4e9e3afaa4f9df8552f0ba5d1004e89ef0a68e1f1f9807c7"}, + {file = "pyzmq-25.1.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48e466162a24daf86f6b5ca72444d2bf39a5e58da5f96370078be67c67adc978"}, + {file = "pyzmq-25.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abc719161780932c4e11aaebb203be3d6acc6b38d2f26c0f523b5b59d2fc1996"}, + {file = "pyzmq-25.1.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:1ccf825981640b8c34ae54231b7ed00271822ea1c6d8ba1090ebd4943759abf5"}, + {file = "pyzmq-25.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c2f20ce161ebdb0091a10c9ca0372e023ce24980d0e1f810f519da6f79c60800"}, + {file = "pyzmq-25.1.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:deee9ca4727f53464daf089536e68b13e6104e84a37820a88b0a057b97bba2d2"}, + {file = "pyzmq-25.1.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:aa8d6cdc8b8aa19ceb319aaa2b660cdaccc533ec477eeb1309e2a291eaacc43a"}, + {file = "pyzmq-25.1.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:019e59ef5c5256a2c7378f2fb8560fc2a9ff1d315755204295b2eab96b254d0a"}, + {file = "pyzmq-25.1.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:b9af3757495c1ee3b5c4e945c1df7be95562277c6e5bccc20a39aec50f826cd0"}, + {file = "pyzmq-25.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:548d6482dc8aadbe7e79d1b5806585c8120bafa1ef841167bc9090522b610fa6"}, + {file = "pyzmq-25.1.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:057e824b2aae50accc0f9a0570998adc021b372478a921506fddd6c02e60308e"}, + {file = "pyzmq-25.1.1-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2243700cc5548cff20963f0ca92d3e5e436394375ab8a354bbea2b12911b20b0"}, + {file = "pyzmq-25.1.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79986f3b4af059777111409ee517da24a529bdbd46da578b33f25580adcff728"}, + {file = "pyzmq-25.1.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:11d58723d44d6ed4dd677c5615b2ffb19d5c426636345567d6af82be4dff8a55"}, + {file = "pyzmq-25.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:49d238cf4b69652257db66d0c623cd3e09b5d2e9576b56bc067a396133a00d4a"}, + {file = "pyzmq-25.1.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fedbdc753827cf014c01dbbee9c3be17e5a208dcd1bf8641ce2cd29580d1f0d4"}, + {file = "pyzmq-25.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bc16ac425cc927d0a57d242589f87ee093884ea4804c05a13834d07c20db203c"}, + {file = "pyzmq-25.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11c1d2aed9079c6b0c9550a7257a836b4a637feb334904610f06d70eb44c56d2"}, + {file = "pyzmq-25.1.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e8a701123029cc240cea61dd2d16ad57cab4691804143ce80ecd9286b464d180"}, + {file = "pyzmq-25.1.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:61706a6b6c24bdece85ff177fec393545a3191eeda35b07aaa1458a027ad1304"}, + {file = "pyzmq-25.1.1.tar.gz", hash = "sha256:259c22485b71abacdfa8bf79720cd7bcf4b9d128b30ea554f01ae71fdbfdaa23"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + [[package]] name = "quapy" version = "0.1.7" @@ -1226,6 +2145,27 @@ scikit-learn = "*" tqdm = "*" xlrd = "*" +[[package]] +name = "requests" +version = "2.31.0" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.7" +files = [ + {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, + {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + [[package]] name = "scikit-learn" version = "1.3.2" @@ -1322,6 +2262,25 @@ files = [ {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + [[package]] name = "tabulate" version = "0.9.0" @@ -1358,6 +2317,26 @@ files = [ {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, ] +[[package]] +name = "tornado" +version = "6.3.3" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">= 3.8" +files = [ + {file = "tornado-6.3.3-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:502fba735c84450974fec147340016ad928d29f1e91f49be168c0a4c18181e1d"}, + {file = "tornado-6.3.3-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:805d507b1f588320c26f7f097108eb4023bbaa984d63176d1652e184ba24270a"}, + {file = "tornado-6.3.3-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bd19ca6c16882e4d37368e0152f99c099bad93e0950ce55e71daed74045908f"}, + {file = "tornado-6.3.3-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ac51f42808cca9b3613f51ffe2a965c8525cb1b00b7b2d56828b8045354f76a"}, + {file = "tornado-6.3.3-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:71a8db65160a3c55d61839b7302a9a400074c9c753040455494e2af74e2501f2"}, + {file = "tornado-6.3.3-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:ceb917a50cd35882b57600709dd5421a418c29ddc852da8bcdab1f0db33406b0"}, + {file = "tornado-6.3.3-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:7d01abc57ea0dbb51ddfed477dfe22719d376119844e33c661d873bf9c0e4a16"}, + {file = "tornado-6.3.3-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:9dc4444c0defcd3929d5c1eb5706cbe1b116e762ff3e0deca8b715d14bf6ec17"}, + {file = "tornado-6.3.3-cp38-abi3-win32.whl", hash = "sha256:65ceca9500383fbdf33a98c0087cb975b2ef3bfb874cb35b8de8740cf7f41bd3"}, + {file = "tornado-6.3.3-cp38-abi3-win_amd64.whl", hash = "sha256:22d3c2fa10b5793da13c807e6fc38ff49a4f6e1e3868b0a6f4164768bb8e20f5"}, + {file = "tornado-6.3.3.tar.gz", hash = "sha256:e7d8db41c0181c80d76c982aacc442c0783a2c54d6400fe028954201a2e032fe"}, +] + [[package]] name = "tqdm" version = "4.66.1" @@ -1378,6 +2357,32 @@ notebook = ["ipywidgets (>=6)"] slack = ["slack-sdk"] telegram = ["requests"] +[[package]] +name = "traitlets" +version = "5.13.0" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.13.0-py3-none-any.whl", hash = "sha256:baf991e61542da48fe8aef8b779a9ea0aa38d8a54166ee250d5af5ecf4486619"}, + {file = "traitlets-5.13.0.tar.gz", hash = "sha256:9b232b9430c8f57288c1024b34a8f0251ddcc47268927367a0dd3eeaca40deb5"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.6.0)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "typing-extensions" +version = "4.8.0" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.8.0-py3-none-any.whl", hash = "sha256:8f92fc8806f9a6b641eaa5318da32b44d401efaac0f6678c9bc448ba3605faa0"}, + {file = "typing_extensions-4.8.0.tar.gz", hash = "sha256:df8e4339e9cb77357558cbdbceca33c303714cf861d1eef15e1070055ae8b7ef"}, +] + [[package]] name = "tzdata" version = "2023.3" @@ -1389,6 +2394,70 @@ files = [ {file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"}, ] +[[package]] +name = "uc-micro-py" +version = "1.0.2" +description = "Micro subset of unicode data files for linkify-it-py projects." +optional = false +python-versions = ">=3.7" +files = [ + {file = "uc-micro-py-1.0.2.tar.gz", hash = "sha256:30ae2ac9c49f39ac6dce743bd187fcd2b574b16ca095fa74cd9396795c954c54"}, + {file = "uc_micro_py-1.0.2-py3-none-any.whl", hash = "sha256:8c9110c309db9d9e87302e2f4ad2c3152770930d88ab385cd544e7a7e75f3de0"}, +] + +[package.extras] +test = ["coverage", "pytest", "pytest-cov"] + +[[package]] +name = "urllib3" +version = "2.0.7" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.7" +files = [ + {file = "urllib3-2.0.7-py3-none-any.whl", hash = "sha256:fdb6d215c776278489906c2f8916e6e7d4f5a9b602ccbcfdf7f016fc8da0596e"}, + {file = "urllib3-2.0.7.tar.gz", hash = "sha256:c97dfde1f7bd43a71c8d2a58e369e9b2bf692d1334ea9f9cae55add7d0dd0f84"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +secure = ["certifi", "cryptography (>=1.9)", "idna (>=2.0.0)", "pyopenssl (>=17.1.0)", "urllib3-secure-extra"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.9" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.9-py2.py3-none-any.whl", hash = "sha256:9a929bd8380f6cd9571a968a9c8f4353ca58d7cd812a4822bba831f8d685b223"}, + {file = "wcwidth-0.2.9.tar.gz", hash = "sha256:a675d1a4a2d24ef67096a04b85b02deeecd8e226f57b5e3a72dbb9ed99d27da8"}, +] + +[[package]] +name = "webencodings" +version = "0.5.1" +description = "Character encoding aliases for legacy web content" +optional = false +python-versions = "*" +files = [ + {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, + {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, +] + +[[package]] +name = "widgetsnbextension" +version = "4.0.9" +description = "Jupyter interactive widgets for Jupyter Notebook" +optional = false +python-versions = ">=3.7" +files = [ + {file = "widgetsnbextension-4.0.9-py3-none-any.whl", hash = "sha256:91452ca8445beb805792f206e560c1769284267a30ceb1cec9f5bcc887d15175"}, + {file = "widgetsnbextension-4.0.9.tar.gz", hash = "sha256:3c1f5e46dc1166dfd40a42d685e6a51396fd34ff878742a3e47c6f0cc4a2a385"}, +] + [[package]] name = "xlrd" version = "2.0.1" @@ -1405,7 +2474,18 @@ build = ["twine", "wheel"] docs = ["sphinx"] test = ["pytest", "pytest-cov"] +[[package]] +name = "xyzservices" +version = "2023.10.1" +description = "Source of XYZ tiles providers" +optional = false +python-versions = ">=3.8" +files = [ + {file = "xyzservices-2023.10.1-py3-none-any.whl", hash = "sha256:6a4c38d3a9f89d3e77153eff9414b36a8ee0850c9e8b85796fd1b2a85b8dfd68"}, + {file = "xyzservices-2023.10.1.tar.gz", hash = "sha256:091229269043bc8258042edbedad4fcb44684b0473ede027b5672ad40dc9fa02"}, +] + [metadata] lock-version = "2.0" -python-versions = "^3.10.12" -content-hash = "6b6c98c2d110094d6a421c7dfd077e63009dc7f00e56fcb6a3fefc02546d2ceb" +python-versions = "^3.10" +content-hash = "d124252a927f493cd39e007bc208fbbe80fb35d668140e5122f091c69d3ce7df" diff --git a/pyproject.toml b/pyproject.toml index aec9b38..b78448a 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -16,6 +16,8 @@ logging = "^0.4.9.6" [tool.poetry.scripts] main = "quacc.main:main" run = "run:run" +panel = "qcpanel.run:run" +sync_up = "remote:sync_code" [tool.poetry.group.dev.dependencies] @@ -25,6 +27,10 @@ pytest-mock = "^3.11.1" pytest-cov = "^4.1.0" tabulate = "^0.9.0" paramiko = "^3.3.1" +panel = "^1.3.1" +ipympl = "^0.9.3" +ipykernel = "^6.26.0" +ipywidgets-bokeh = "^1.5.0" [tool.pytest.ini_options] addopts = "--cov=quacc --capture=tee-sys" diff --git a/qcpanel/__pycache__/__init__.cpython-310.pyc b/qcpanel/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 87941758dc4270e636b18169ae24f5a41c825e1b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 143 zcmd1j<>g`kf?b(@sUZ3>h(HF6K#l_t7qb9~6oz01O-8?!3`HPe1o6vAKR2&LKUqJt zIJKx)KPSH^HBY}dzqBYhRlg*)I8(ncxgaqwHAg=_J~J<~BtBlRpz;=nO>TZlX-=vg M$gE-}Ai=@_02=5YivR!s diff --git a/qcpanel/__pycache__/run.cpython-310.pyc b/qcpanel/__pycache__/run.cpython-310.pyc deleted file mode 100644 index 7d2cb465162be06b380d30f9b51976262c24d558..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 4954 zcmd5=Ns}B$6|Stks(VJQ(JtARjIePVGy?`~!Xbog$u^tEMv_?yOjA>t(^IXUu2xpI zmZ3VrffT{TeISCH!x1yw=9dt`kpqXk5u9|k18mtW-^=P*C9~Ye0B&*Cx03pwB@A`DZ?8Iu!|FCS@zCb<{na1| zOq<&eSED3imhgHp_qab{%!-02j9A3@<2(}4vdv@OxaTE}huWKb2JOvhuUUTJo}0`} zYb|~dwOKwV9L#WtA4cr}KO!8_df7tDQGN_92l*5H1V4F?C3E}~f9#%>9OCS%)joY6 z=dl*sOuKKUY6buHrB{G6ms6FNLR}HVLaHQMDhgF9nGV}5@wq7T?m&B7^i`^zG|RNj zW#-XT(@%(h`dz}WyaM2i+xM)>>RFeqyKJ3R?gkrsRIj`f*4S5e@g9PW$*<@UUu zU-`YDVwGJv+%+=ufB_GAG;y)_crjy`dFx}NKwG$q-v>_sx>)Y*#+WIqVm(~a32fpp z7XOWX!@g>5+V^SneGb^PwI_?wfG07|m=8KbDQ=?Cp8vA8Gr4KWgXs0(+`{TWEo2LC zl|q&a{X&YtLRpMtCKeP#vT!3CrUTJmkfXu;@Q#kp_w!O^#p>|FVGRF(Hu!|Kb~ckD zRicy0&ae-u&Y$lWS=uizps>~d{t$h&XQsQh>1lVh;6nSWLdiVSu_#r(nyNyUiJKLJ zt3unufp%#RI(|J>wAp^Xq@%7-_0HR&4A5J`U@Uop;G`K$(o3A2-MxshNEbJXd;J}Jzgu{;Af8pJGSF7xrTx4-Tuc0e`%uksmm+M{c9>D#(CkBYK- ztkxycs-6oi^QL+PE#%I`1J)WvdK4_mqZoBf9s|l#1dkCs4ru#EAo6q6aF*cn1Wyq> z4cPP^B?9>cdQLjC>%^_;iPM|iT71;0B#FhrXCC%hJl><_BqyROV_37$;L2LJHmort z9bdOOgIU?rvW+s#iMud7o6K(PDu|;;X5?2cnbO1^dpt5d9Mi)$J$xQlFhAblP4t@K zpqxoK4!Ra^{f>=8(AXiK!MK5^ zk%}v;iYl)Pss=wg@yAW&tkaVwKgN$w7)mphM{QN3iZ<*jz`jmQ=sZpA?&O43%?-ND zQ;U+!T9Sr_Cp&Qehx-%5=d3xR`WR4T3 zbUb+)Ep1nl0VfUPO)!pwJVKtQ-C}^%ymBR9R)%7>7Nd2fS@C5mk>t(X@-mfZ&WGeh zE0DY-@q~;Bngp{1d+pTRW=8Eq+G{Q25Y7;#flvpTXb1I?|NSo77<->4fChQBsF>O0 zCaX_9t6dHktAniQk5+Nh{%DZj7zsl%I=~RnELyLMzQ~krU0M;@^_PuoUxTX}>eiK% z=f$oTc?QdAcL_9ZI8r-Tid&dqm}Ww1|B_j!J!AMvdmXcS*r{DgsT-Xgr=n+Y)|_uY zo2ff>>P_iZ{d8CVgFEGYoychzFH`E)c6r(-Y19*uY|Er+{Jje(4{! zi}J^D1pH8@*u);SYoKA9sQ-k@|07X@K0_64Q7=C<@x~zQbt3ErKg^F9;%$PKBSW}H z4dFIGxW_=au_4^!{|({FFG2wFO9bZ#76=|;ckfdBR{(2I*4IqV@;{QOe2#{F6|m<9 zi1D|GQocZ4zCmD?eQ~>FsuYqK!~ZQ6&J&P}kl!RAC6nJGxJd94pp7WK<|{)FNyE@q zr>?})Coqa6o<2ZXzCxo-tn?~P;XX2Qc#S%Jo8Y?y#LTeS?^F48f<=O}1aA<$N$>-L zD+Gq)o~6raO`8onSxim%a-l2&28mO%MPU(l~dVW1clt4*kiYH*ZmEPSrx?+-r`zwhyKg? z#DO}#+P2}ImwI63QV0AFBIP`TQ=p}ja5Na^+4a6Kd|-B56S{jXT`H3hiNnowsV~}| zG%hBfK~c?oQ1c|1>N}FE;qWtLKNZ05F|;Hn7PF?^WOH^1Vv;Lp(5^(bwnsJ&nrST~ z8;JsPB1^Hmwu~SdiVP7&AX9SI5iD=8%huaZBZ@@Sc*HFlVObDPP}%QU?>h*zeR>Z7F+_{nM|3qDDed;fvU(MJClg9$ zpa5luwqRl-fwuhJUm-7fz+MF3#OVkLpXe7UPh69fyX6WTe2{W3MOh}TTVkm!vg@!7 z#8};Y0ERh>N#rttIiN@SC$Qj6YU%G zV0vcgwEdxrq|nxg>p2w24w0cyJ^-On0!GQ##D$ev>kj2E%0Z>+0o!Y(*Q`sG+vJ}beOR_s!MacOkRb|q| ztQ|ZxZAol8QN1)LsmI%iZ`!4H&69m3=pe!W5c?=exybCc$jkpU^jl2+lJ;1KwUQ*U zi1#bfZ2YjigSzYkl7JWt3ANFDlYyG+N{-wZ;f=~X#hW9e3iI>|!K9(dv4@^X^Mb~( zkB-D`B?cu$*3Zx~#t~3pQWFtzgS<{a%1|Gdwz})?cZfbbk9Py3zPLb^P*Ug~8kP@j hVw diff --git a/quacc.log b/quacc.log index e722cca..2d89fff 100644 --- a/quacc.log +++ b/quacc.log @@ -5035,3 +5035,601 @@ 09/11/23 21:08:08| DEBUG [BinaryQuantifierAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 10.0, 'quantifier__classifier__class_weight': None, 'quantifier__recalib': None, 'confidence': ['max_conf', 'entropy']} (score=0.00688) [took 1027.9305s] 09/11/23 21:15:36| INFO bin_sld_gs finished [took 1476.4334s] 09/11/23 21:15:36| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs finished [took 1479.7993s] +---------------------------------------------------------------------------------------------------- +10/11/23 13:06:41| INFO dataset rcv1_CCAT_9prevs +10/11/23 13:06:47| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +10/11/23 13:06:52| WARNING Method mul_sld failed. Exception: ExtendedCollection.from_lc() got an unexpected keyword argument 'pred_proba' +10/11/23 13:06:56| WARNING Method mul3w_sld failed. Exception: ExtendedCollection.from_lc() got an unexpected keyword argument 'pred_proba' +---------------------------------------------------------------------------------------------------- +10/11/23 13:07:50| INFO dataset rcv1_CCAT_9prevs +10/11/23 13:07:55| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +10/11/23 13:09:28| WARNING Method mul_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0}) +10/11/23 13:09:29| WARNING Method mul3w_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0}) +10/11/23 13:09:46| INFO ref finished [took 88.3729s] +10/11/23 13:09:54| INFO atc_mc finished [took 90.4167s] +10/11/23 13:09:54| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs finished [took 118.7000s] +10/11/23 13:09:54| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs started +10/11/23 13:11:25| WARNING Method mul3w_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0}) +10/11/23 13:11:26| WARNING Method mul_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0}) +---------------------------------------------------------------------------------------------------- +10/11/23 13:19:00| INFO dataset rcv1_CCAT_9prevs +10/11/23 13:19:05| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +10/11/23 13:19:10| WARNING Method mul_sld failed. Exception: 'int' object is not iterable +10/11/23 13:19:13| WARNING Method mul3w_sld failed. Exception: 'int' object is not iterable +---------------------------------------------------------------------------------------------------- +10/11/23 13:20:12| INFO dataset rcv1_CCAT_9prevs +10/11/23 13:20:17| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +10/11/23 13:21:36| WARNING Method mul_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0}) +10/11/23 13:21:39| WARNING Method mul3w_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0, 1}) +10/11/23 13:21:54| INFO ref finished [took 77.8358s] +10/11/23 13:22:02| INFO atc_mc finished [took 81.6210s] +10/11/23 13:22:02| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs finished [took 104.5107s] +10/11/23 13:22:02| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs started +10/11/23 13:23:31| WARNING Method mul3w_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0, 1}) +10/11/23 13:23:31| WARNING Method mul_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0}) +10/11/23 13:23:47| INFO ref finished [took 83.8010s] +10/11/23 13:23:55| INFO atc_mc finished [took 82.0180s] +10/11/23 13:23:55| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs finished [took 113.0759s] +10/11/23 13:23:55| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs started +10/11/23 13:25:35| WARNING Method mul3w_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0, 1}) +10/11/23 13:25:35| WARNING Method mul_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0}) +10/11/23 13:25:52| INFO ref finished [took 91.9242s] +10/11/23 13:26:01| INFO atc_mc finished [took 91.0173s] +10/11/23 13:26:01| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs finished [took 125.8152s] +10/11/23 13:26:01| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs started +---------------------------------------------------------------------------------------------------- +10/11/23 14:35:06| INFO dataset rcv1_CCAT_1prevs +10/11/23 14:35:16| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 14:36:54| WARNING Method mul_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0}) +10/11/23 14:37:32| INFO ref finished [took 114.8732s] +---------------------------------------------------------------------------------------------------- +10/11/23 14:45:14| INFO dataset rcv1_CCAT_1prevs +10/11/23 14:45:20| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 14:46:56| INFO ref finished [took 77.5985s] +10/11/23 14:47:09| INFO atc_mc finished [took 83.9760s] +10/11/23 14:56:11| WARNING Method mul_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0}) +10/11/23 14:56:13| WARNING Method mul3w_sld failed. Exception: labels ({1, 2}) contain values not included in classes_ ({0, 1}) +10/11/23 14:56:13| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs finished [took 652.8237s] +---------------------------------------------------------------------------------------------------- +10/11/23 14:56:25| INFO dataset rcv1_CCAT_1prevs +---------------------------------------------------------------------------------------------------- +10/11/23 14:56:31| INFO dataset rcv1_CCAT_1prevs +10/11/23 14:56:37| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 14:58:44| INFO ref finished [took 106.4738s] +10/11/23 14:59:09| INFO atc_mc finished [took 117.9679s] +10/11/23 15:16:17| INFO mul3w_sld finished [took 1166.3690s] +---------------------------------------------------------------------------------------------------- +10/11/23 15:49:18| INFO dataset rcv1_CCAT_1prevs +10/11/23 15:49:23| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 15:50:15| INFO ref finished [took 44.7880s] +---------------------------------------------------------------------------------------------------- +10/11/23 16:24:50| INFO dataset rcv1_CCAT_1prevs +10/11/23 16:24:57| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +---------------------------------------------------------------------------------------------------- +10/11/23 16:26:54| INFO dataset rcv1_CCAT_1prevs +10/11/23 16:27:01| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +---------------------------------------------------------------------------------------------------- +10/11/23 16:28:15| INFO dataset rcv1_CCAT_1prevs +10/11/23 16:28:22| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +---------------------------------------------------------------------------------------------------- +10/11/23 16:29:17| INFO dataset rcv1_CCAT_1prevs +10/11/23 16:29:25| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 16:30:30| INFO ref finished [took 52.9566s] +---------------------------------------------------------------------------------------------------- +10/11/23 16:33:04| INFO dataset rcv1_CCAT_1prevs +10/11/23 16:33:11| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 16:34:10| INFO ref finished [took 50.4274s] +10/11/23 16:34:22| INFO mul_sld finished [took 66.6494s] +10/11/23 16:34:22| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs finished [took 70.8885s] +---------------------------------------------------------------------------------------------------- +10/11/23 16:36:29| INFO dataset rcv1_CCAT_9prevs +10/11/23 16:36:34| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +10/11/23 16:37:26| WARNING Method mul3w_sld failed. Exception: index 3 is out of bounds for axis 0 with size 3 +10/11/23 16:37:40| INFO ref finished [took 50.7235s] +10/11/23 16:37:47| INFO atc_mc finished [took 54.6993s] +---------------------------------------------------------------------------------------------------- +10/11/23 16:45:15| INFO dataset rcv1_CCAT_9prevs +10/11/23 16:45:20| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +10/11/23 16:46:11| WARNING Method mul_sld failed. Exception: unsupported operand type(s) for /: 'NoneType' and 'int' +10/11/23 16:46:12| WARNING Method mul3w_sld failed. Exception: unsupported operand type(s) for /: 'NoneType' and 'int' +10/11/23 16:46:25| INFO ref finished [took 50.7336s] +10/11/23 16:46:33| INFO atc_mc finished [took 54.1424s] +10/11/23 16:46:33| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs finished [took 72.4632s] +10/11/23 16:46:33| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs started +10/11/23 16:47:28| WARNING Method mul_sld failed. Exception: unsupported operand type(s) for /: 'NoneType' and 'int' +10/11/23 16:47:29| WARNING Method mul3w_sld failed. Exception: unsupported operand type(s) for /: 'NoneType' and 'int' +---------------------------------------------------------------------------------------------------- +10/11/23 16:51:39| INFO dataset rcv1_CCAT_9prevs +10/11/23 16:51:44| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +10/11/23 16:52:50| INFO ref finished [took 51.5277s] +10/11/23 16:52:55| INFO mul3w_sld finished [took 62.7316s] +10/11/23 16:52:58| INFO atc_mc finished [took 55.6057s] +10/11/23 16:53:25| INFO mul_sld finished [took 97.7123s] +10/11/23 16:53:25| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs finished [took 100.9808s] +10/11/23 16:53:25| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs started +10/11/23 16:54:36| INFO ref finished [took 55.7445s] +10/11/23 16:54:43| INFO atc_mc finished [took 56.7203s] +10/11/23 16:54:45| INFO mul3w_sld finished [took 71.0450s] +10/11/23 16:54:53| INFO mul_sld finished [took 84.6525s] +10/11/23 16:54:53| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs finished [took 88.0027s] +10/11/23 16:54:53| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs started +10/11/23 16:56:06| INFO ref finished [took 54.1395s] +10/11/23 16:56:11| INFO mul3w_sld finished [took 70.1307s] +10/11/23 16:56:13| INFO atc_mc finished [took 57.6850s] +10/11/23 16:56:16| INFO mul_sld finished [took 79.3229s] +10/11/23 16:56:16| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs finished [took 83.1293s] +10/11/23 16:56:16| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs started +10/11/23 16:57:25| INFO ref finished [took 53.7706s] +10/11/23 16:57:31| INFO mul3w_sld finished [took 67.0318s] +10/11/23 16:57:32| INFO atc_mc finished [took 57.7642s] +10/11/23 16:57:35| INFO mul_sld finished [took 76.4066s] +10/11/23 16:57:35| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs finished [took 79.0392s] +10/11/23 16:57:35| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs started +10/11/23 16:58:46| INFO ref finished [took 53.7141s] +10/11/23 16:58:51| INFO mul3w_sld finished [took 68.1234s] +10/11/23 16:58:53| INFO atc_mc finished [took 57.5702s] +10/11/23 16:58:59| INFO mul_sld finished [took 80.1266s] +10/11/23 16:58:59| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs finished [took 83.5102s] +10/11/23 16:58:59| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs started +10/11/23 17:00:08| INFO ref finished [took 54.7955s] +10/11/23 17:00:12| INFO mul3w_sld finished [took 65.3780s] +10/11/23 17:00:16| INFO atc_mc finished [took 58.0304s] +10/11/23 17:00:35| INFO mul_sld finished [took 92.9140s] +10/11/23 17:00:35| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs finished [took 95.8577s] +10/11/23 17:00:35| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs started +10/11/23 17:01:48| INFO ref finished [took 56.4922s] +10/11/23 17:01:53| INFO atc_mc finished [took 57.1146s] +10/11/23 17:01:53| INFO mul3w_sld finished [took 70.4300s] +10/11/23 17:02:03| INFO mul_sld finished [took 84.4971s] +10/11/23 17:02:03| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs finished [took 88.5686s] +10/11/23 17:02:03| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs started +10/11/23 17:03:17| INFO ref finished [took 55.9443s] +10/11/23 17:03:19| INFO mul3w_sld finished [took 68.1298s] +10/11/23 17:03:21| INFO atc_mc finished [took 55.8708s] +10/11/23 17:03:29| INFO mul_sld finished [took 81.8552s] +10/11/23 17:03:29| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs finished [took 85.5029s] +10/11/23 17:03:29| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs started +10/11/23 17:04:36| INFO ref finished [took 52.4327s] +10/11/23 17:04:42| INFO mul3w_sld finished [took 65.1205s] +10/11/23 17:04:44| INFO atc_mc finished [took 56.4258s] +10/11/23 17:05:07| INFO mul_sld finished [took 95.0175s] +10/11/23 17:05:07| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs finished [took 98.2742s] +---------------------------------------------------------------------------------------------------- +10/11/23 17:11:56| INFO dataset rcv1_CCAT_9prevs +10/11/23 17:12:01| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +10/11/23 17:13:39| INFO ref finished [took 70.2028s] +10/11/23 17:13:41| INFO mul3w_sld finished [took 92.9234s] +10/11/23 17:13:43| INFO mul3wc_sld finished [took 81.4985s] +10/11/23 17:13:47| INFO atc_mc finished [took 69.8737s] +10/11/23 17:13:49| INFO mulc_sld finished [took 91.9609s] +10/11/23 17:14:09| INFO mul_sld finished [took 125.3021s] +10/11/23 17:14:09| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs finished [took 128.4443s] +10/11/23 17:14:09| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs started +10/11/23 17:15:49| INFO ref finished [took 69.9186s] +10/11/23 17:15:52| INFO mul3w_sld finished [took 94.1565s] +10/11/23 17:15:53| INFO mul3wc_sld finished [took 81.7286s] +10/11/23 17:15:55| INFO atc_mc finished [took 68.0996s] +10/11/23 17:15:59| INFO mulc_sld finished [took 93.4749s] +10/11/23 17:16:02| INFO mul_sld finished [took 109.9866s] +10/11/23 17:16:02| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs finished [took 113.2243s] +10/11/23 17:16:02| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs started +10/11/23 17:17:46| INFO ref finished [took 69.7954s] +10/11/23 17:17:49| INFO mul3w_sld finished [took 97.4538s] +10/11/23 17:17:52| INFO atc_mc finished [took 68.3256s] +10/11/23 17:17:53| INFO mul3wc_sld finished [took 84.1359s] +10/11/23 17:17:54| INFO mul_sld finished [took 107.4652s] +10/11/23 17:17:55| INFO mulc_sld finished [took 95.2790s] +10/11/23 17:17:55| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs finished [took 112.5479s] +10/11/23 17:17:55| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs started +10/11/23 17:19:33| INFO ref finished [took 69.0242s] +10/11/23 17:19:37| INFO mul3w_sld finished [took 94.6726s] +10/11/23 17:19:39| INFO mul3wc_sld finished [took 83.5757s] +10/11/23 17:19:40| INFO atc_mc finished [took 70.0895s] +10/11/23 17:19:42| INFO mul_sld finished [took 104.3169s] +10/11/23 17:19:45| INFO mulc_sld finished [took 96.4947s] +10/11/23 17:19:45| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs finished [took 109.8588s] +10/11/23 17:19:45| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs started +10/11/23 17:21:25| INFO ref finished [took 68.6827s] +10/11/23 17:21:28| INFO mul3w_sld finished [took 95.7660s] +10/11/23 17:21:33| INFO mul3wc_sld finished [took 84.6669s] +10/11/23 17:21:34| INFO atc_mc finished [took 68.2059s] +10/11/23 17:21:38| INFO mul_sld finished [took 109.7998s] +10/11/23 17:21:41| INFO mulc_sld finished [took 100.2322s] +10/11/23 17:21:41| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs finished [took 116.3329s] +10/11/23 17:21:41| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs started +10/11/23 17:23:20| INFO ref finished [took 68.4213s] +10/11/23 17:23:21| INFO mul3w_sld finished [took 92.4175s] +10/11/23 17:23:25| INFO mul3wc_sld finished [took 84.2143s] +10/11/23 17:23:28| INFO atc_mc finished [took 70.9748s] +10/11/23 17:23:33| INFO mul_sld finished [took 108.9404s] +10/11/23 17:23:35| INFO mulc_sld finished [took 98.6542s] +10/11/23 17:23:35| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs finished [took 114.0658s] +10/11/23 17:23:35| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs started +10/11/23 17:25:15| INFO ref finished [took 67.6212s] +10/11/23 17:25:19| INFO mul3w_sld finished [took 94.4720s] +10/11/23 17:25:23| INFO mul3wc_sld finished [took 84.2353s] +10/11/23 17:25:24| INFO atc_mc finished [took 68.8926s] +10/11/23 17:25:29| INFO mul_sld finished [took 110.0608s] +10/11/23 17:25:31| INFO mulc_sld finished [took 98.8512s] +10/11/23 17:25:31| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs finished [took 116.1487s] +10/11/23 17:25:31| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs started +10/11/23 17:27:13| INFO ref finished [took 67.6916s] +10/11/23 17:27:14| INFO mul3wc_sld finished [took 77.9027s] +10/11/23 17:27:16| INFO mul3w_sld finished [took 95.6551s] +10/11/23 17:27:21| INFO atc_mc finished [took 69.1522s] +10/11/23 17:27:25| INFO mul_sld finished [took 110.5946s] +10/11/23 17:27:26| INFO mulc_sld finished [took 97.1366s] +10/11/23 17:27:26| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs finished [took 115.0205s] +10/11/23 17:27:26| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs started +10/11/23 17:28:57| INFO ref finished [took 60.3214s] +10/11/23 17:29:05| INFO mul3w_sld finished [took 89.8969s] +10/11/23 17:29:08| INFO mul3wc_sld finished [took 79.4281s] +10/11/23 17:29:09| INFO mulc_sld finished [took 89.2493s] +10/11/23 17:29:10| INFO atc_mc finished [took 69.0056s] +10/11/23 17:29:29| INFO mul_sld finished [took 119.2894s] +10/11/23 17:29:29| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs finished [took 122.1553s] +---------------------------------------------------------------------------------------------------- +10/11/23 17:53:55| INFO dataset rcv1_CCAT_9prevs +10/11/23 17:54:01| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +10/11/23 17:54:04| WARNING Method mul_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:54:06| WARNING Method mul3w_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:54:53| INFO ref finished [took 44.4485s] +10/11/23 17:55:01| INFO atc_mc finished [took 49.8926s] +10/11/23 17:55:01| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs finished [took 60.0268s] +10/11/23 17:55:01| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs started +10/11/23 17:55:04| WARNING Method mul_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:55:07| WARNING Method mul3w_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:55:54| INFO ref finished [took 44.7491s] +10/11/23 17:56:02| INFO atc_mc finished [took 49.9022s] +10/11/23 17:56:02| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs finished [took 60.8386s] +10/11/23 17:56:02| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs started +10/11/23 17:56:05| WARNING Method mul_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:56:08| WARNING Method mul3w_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:56:56| INFO ref finished [took 45.2058s] +10/11/23 17:57:03| INFO atc_mc finished [took 49.0981s] +10/11/23 17:57:03| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs finished [took 61.1000s] +10/11/23 17:57:03| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs started +10/11/23 17:57:05| WARNING Method mul_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:57:08| WARNING Method mul3w_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:57:54| INFO ref finished [took 44.3211s] +10/11/23 17:58:01| INFO atc_mc finished [took 48.9814s] +10/11/23 17:58:01| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs finished [took 58.0909s] +10/11/23 17:58:01| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs started +10/11/23 17:58:04| WARNING Method mul_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:58:06| WARNING Method mul3w_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:58:53| INFO ref finished [took 43.7895s] +10/11/23 17:59:01| INFO atc_mc finished [took 49.8161s] +10/11/23 17:59:01| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs finished [took 60.3531s] +10/11/23 17:59:01| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs started +10/11/23 17:59:04| WARNING Method mul_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:59:07| WARNING Method mul3w_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 17:59:53| INFO ref finished [took 43.8473s] +10/11/23 18:00:02| INFO atc_mc finished [took 50.1003s] +10/11/23 18:00:02| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs finished [took 60.5473s] +10/11/23 18:00:02| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs started +10/11/23 18:00:05| WARNING Method mul_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 18:00:08| WARNING Method mul3w_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 18:00:55| INFO ref finished [took 44.2168s] +10/11/23 18:01:02| INFO atc_mc finished [took 49.0013s] +10/11/23 18:01:02| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs finished [took 60.5261s] +10/11/23 18:01:02| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs started +10/11/23 18:01:06| WARNING Method mul_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 18:01:08| WARNING Method mul3w_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 18:01:55| INFO ref finished [took 44.0374s] +10/11/23 18:02:02| INFO atc_mc finished [took 49.0107s] +10/11/23 18:02:02| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs finished [took 60.0171s] +10/11/23 18:02:02| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs started +10/11/23 18:02:06| WARNING Method mul_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 18:02:08| WARNING Method mul3w_sld_gs failed. Exception: no combination of hyperparameters seem to work +10/11/23 18:02:55| INFO ref finished [took 44.8341s] +10/11/23 18:03:02| INFO atc_mc finished [took 49.3663s] +10/11/23 18:03:02| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs finished [took 59.9146s] +---------------------------------------------------------------------------------------------------- +10/11/23 18:25:20| INFO dataset rcv1_CCAT_1prevs +10/11/23 18:25:26| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 18:25:33| WARNING Method mul_sld_gs failed. Exception: '>=' not supported between instances of 'AttributeError' and 'int' +---------------------------------------------------------------------------------------------------- +10/11/23 18:27:03| INFO dataset rcv1_CCAT_1prevs +10/11/23 18:27:08| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +---------------------------------------------------------------------------------------------------- +10/11/23 18:32:33| INFO dataset rcv1_CCAT_1prevs +10/11/23 18:32:38| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 18:32:56| WARNING Method mul_sld_gs failed. Exception: '>=' not supported between instances of 'AssertionError' and 'int' +---------------------------------------------------------------------------------------------------- +10/11/23 18:34:35| INFO dataset rcv1_CCAT_1prevs +10/11/23 18:34:40| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 18:36:25| INFO ref finished [took 96.5839s] +10/11/23 18:44:44| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 10.0, 'quantifier__classifier__class_weight': None, 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.00784) [took 599.7376s] +10/11/23 18:45:34| INFO mul_sld_gs finished [took 649.9561s] +10/11/23 18:45:34| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs finished [took 654.0138s] +---------------------------------------------------------------------------------------------------- +10/11/23 19:09:37| INFO dataset rcv1_CCAT_9prevs +10/11/23 19:09:42| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +10/11/23 19:12:34| INFO ref finished [took 161.2859s] +10/11/23 19:13:10| INFO atc_mc finished [took 195.4184s] +10/11/23 19:23:09| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 0.1, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.00980) [took 799.2257s] +10/11/23 19:25:06| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 0.1, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.01058) [took 920.3112s] +10/11/23 19:25:20| INFO mul3w_sld_gs finished [took 930.7628s] +10/11/23 19:25:54| INFO mul_sld_gs finished [took 968.7880s] +10/11/23 19:25:54| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs finished [took 972.0481s] +10/11/23 19:25:54| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs started +10/11/23 19:29:20| INFO ref finished [took 194.4623s] +10/11/23 19:29:41| INFO atc_mc finished [took 212.3133s] +10/11/23 19:39:18| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 0.01, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.01783) [took 796.9196s] +10/11/23 19:41:39| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 0.01, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.01419) [took 940.9938s] +10/11/23 19:41:44| INFO mul3w_sld_gs finished [took 942.8448s] +10/11/23 19:42:29| INFO mul_sld_gs finished [took 991.5975s] +10/11/23 19:42:29| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs finished [took 995.0756s] +10/11/23 19:42:29| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs started +10/11/23 19:45:53| INFO ref finished [took 192.2438s] +10/11/23 19:46:27| INFO atc_mc finished [took 222.4684s] +10/11/23 19:56:09| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 1000.0, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.00855) [took 811.9404s] +10/11/23 19:58:17| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 10.0, 'quantifier__classifier__class_weight': None, 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.00987) [took 944.2852s] +10/11/23 19:58:26| INFO mul3w_sld_gs finished [took 949.1296s] +10/11/23 19:59:09| INFO mul_sld_gs finished [took 995.5734s] +10/11/23 19:59:09| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs finished [took 999.2987s] +10/11/23 19:59:09| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs started +10/11/23 20:02:30| INFO ref finished [took 192.8661s] +10/11/23 20:02:59| INFO atc_mc finished [took 217.1095s] +10/11/23 20:12:26| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 100.0, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': None, 'confidence': ['max_conf', 'entropy']} (score=0.01004) [took 792.0336s] +10/11/23 20:14:45| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 100.0, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': None, 'confidence': ['max_conf', 'entropy']} (score=0.01023) [took 933.3629s] +10/11/23 20:14:49| INFO mul3w_sld_gs finished [took 935.2472s] +10/11/23 20:15:33| INFO mul_sld_gs finished [took 981.2718s] +10/11/23 20:15:33| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs finished [took 983.8857s] +10/11/23 20:15:33| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs started +10/11/23 20:18:54| INFO ref finished [took 190.6586s] +10/11/23 20:19:31| INFO atc_mc finished [took 222.0446s] +10/11/23 20:28:53| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 0.1, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.00628) [took 794.2257s] +10/11/23 20:31:06| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 1.0, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.00601) [took 930.8288s] +10/11/23 20:31:12| INFO mul3w_sld_gs finished [took 932.7508s] +10/11/23 20:31:58| INFO mul_sld_gs finished [took 982.4600s] +10/11/23 20:31:58| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs finished [took 985.3991s] +10/11/23 20:31:58| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs started +10/11/23 20:35:16| INFO ref finished [took 187.4145s] +10/11/23 20:35:52| INFO atc_mc finished [took 219.1775s] +10/11/23 20:45:24| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 0.1, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.00683) [took 799.7247s] +10/11/23 20:47:38| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 100.0, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.00635) [took 936.5460s] +10/11/23 20:47:46| INFO mul3w_sld_gs finished [took 941.6249s] +10/11/23 20:48:28| INFO mul_sld_gs finished [took 987.3566s] +10/11/23 20:48:28| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs finished [took 990.3392s] +10/11/23 20:48:28| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs started +10/11/23 20:52:00| INFO ref finished [took 199.2882s] +10/11/23 20:52:27| INFO atc_mc finished [took 221.3995s] +10/11/23 21:01:50| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 0.01, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.01112) [took 794.5357s] +10/11/23 21:03:48| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 0.01, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.01010) [took 916.6784s] +10/11/23 21:04:04| INFO mul3w_sld_gs finished [took 928.2783s] +10/11/23 21:04:45| INFO mul_sld_gs finished [took 972.9080s] +10/11/23 21:04:45| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs finished [took 976.3012s] +10/11/23 21:04:45| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs started +10/11/23 21:07:55| INFO ref finished [took 179.6820s] +10/11/23 21:08:25| INFO atc_mc finished [took 205.4880s] +10/11/23 21:17:51| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 100.0, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.01448) [took 778.9722s] +10/11/23 21:20:04| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 100.0, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': 'bcts', 'confidence': ['max_conf', 'entropy']} (score=0.01845) [took 915.8827s] +10/11/23 21:20:10| INFO mul3w_sld_gs finished [took 917.5008s] +10/11/23 21:20:53| INFO mul_sld_gs finished [took 965.1015s] +10/11/23 21:20:53| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs finished [took 968.7572s] +10/11/23 21:20:53| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs started +10/11/23 21:23:59| INFO ref finished [took 175.7336s] +10/11/23 21:24:36| INFO atc_mc finished [took 208.4952s] +10/11/23 21:34:01| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 100.0, 'quantifier__classifier__class_weight': 'balanced', 'quantifier__recalib': None, 'confidence': ['max_conf', 'entropy']} (score=0.00971) [took 780.9362s] +10/11/23 21:35:59| DEBUG [MultiClassAccuracyEstimator] optimization finished: best params {'quantifier__classifier__C': 10.0, 'quantifier__classifier__class_weight': None, 'quantifier__recalib': None, 'confidence': ['max_conf', 'entropy']} (score=0.00915) [took 902.5701s] +10/11/23 21:36:12| INFO mul3w_sld_gs finished [took 911.8556s] +10/11/23 21:36:47| INFO mul_sld_gs finished [took 950.1102s] +10/11/23 21:36:47| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs finished [took 953.3643s] +---------------------------------------------------------------------------------------------------- +10/11/23 23:35:14| INFO dataset rcv1_CCAT_1prevs +10/11/23 23:35:19| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 23:36:36| INFO ref finished [took 57.4602s] +10/11/23 23:36:41| INFO mul3w_sld finished [took 72.3696s] +10/11/23 23:36:43| INFO atc_mc finished [took 57.1442s] +10/11/23 23:36:48| INFO mul_sld finished [took 84.9653s] +10/11/23 23:36:48| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs finished [took 88.9861s] +10/11/23 23:36:48| ERROR Evaluation over rcv1_CCAT_1prevs failed. Exception: file must have a 'write' attribute +---------------------------------------------------------------------------------------------------- +10/11/23 23:40:17| INFO dataset rcv1_CCAT_1prevs +10/11/23 23:40:23| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 23:41:49| INFO ref finished [took 68.3161s] +10/11/23 23:41:53| INFO mul3w_sld finished [took 80.2113s] +10/11/23 23:41:56| INFO atc_mc finished [took 67.4302s] +10/11/23 23:42:01| INFO mul_sld finished [took 94.1596s] +10/11/23 23:42:01| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs finished [took 98.1999s] +10/11/23 23:42:01| ERROR Evaluation over rcv1_CCAT_1prevs failed. Exception: write() argument must be str, not bytes +---------------------------------------------------------------------------------------------------- +10/11/23 23:46:43| INFO dataset rcv1_CCAT_1prevs +10/11/23 23:46:48| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs started +10/11/23 23:48:04| INFO ref finished [took 56.6494s] +10/11/23 23:48:10| INFO mul3w_sld finished [took 71.5272s] +10/11/23 23:48:12| INFO atc_mc finished [took 56.8870s] +10/11/23 23:48:15| INFO mul_sld finished [took 83.1487s] +10/11/23 23:48:15| INFO Dataset sample 0.50 of dataset rcv1_CCAT_1prevs finished [took 86.6542s] +---------------------------------------------------------------------------------------------------- +11/11/23 02:18:21| ERROR Evaluation over rcv1_CCAT_3prevs failed. Exception: 'Invalid estimator: estimator mul3w_slds does not exist' +11/11/23 02:18:21| ERROR Failed while saving configuration rcv1_CCAT_debug_gs of rcv1_CCAT_3prevs. Exception: local variable 'dr' referenced before assignment +---------------------------------------------------------------------------------------------------- +11/11/23 02:20:09| INFO dataset rcv1_CCAT_3prevs +11/11/23 02:20:15| INFO Dataset sample 0.20 of dataset rcv1_CCAT_3prevs started +11/11/23 02:21:26| INFO ref finished [took 54.1901s] +11/11/23 02:21:33| INFO mul3w_sld finished [took 69.3537s] +11/11/23 02:21:34| INFO atc_mc finished [took 56.0851s] +11/11/23 02:21:37| INFO mul_sld finished [took 78.6476s] +11/11/23 02:21:37| INFO Dataset sample 0.20 of dataset rcv1_CCAT_3prevs finished [took 82.3064s] +11/11/23 02:21:37| INFO Dataset sample 0.50 of dataset rcv1_CCAT_3prevs started +11/11/23 02:22:46| INFO ref finished [took 53.7198s] +11/11/23 02:22:52| INFO mul3w_sld finished [took 67.7595s] +11/11/23 02:22:54| INFO atc_mc finished [took 57.2473s] +11/11/23 02:23:00| INFO mul_sld finished [took 80.1637s] +11/11/23 02:23:00| INFO Dataset sample 0.50 of dataset rcv1_CCAT_3prevs finished [took 83.2895s] +11/11/23 02:23:00| INFO Dataset sample 0.80 of dataset rcv1_CCAT_3prevs started +11/11/23 02:24:11| INFO ref finished [took 53.3185s] +11/11/23 02:24:16| INFO mul3w_sld finished [took 67.0687s] +11/11/23 02:24:19| INFO atc_mc finished [took 56.5244s] +11/11/23 02:24:26| INFO mul_sld finished [took 82.6075s] +11/11/23 02:24:26| INFO Dataset sample 0.80 of dataset rcv1_CCAT_3prevs finished [took 85.5541s] +---------------------------------------------------------------------------------------------------- +11/11/23 03:03:37| INFO dataset rcv1_CCAT_9prevs +11/11/23 03:03:42| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +11/11/23 03:04:49| INFO ref finished [took 51.5735s] +11/11/23 03:04:53| INFO mul3w_sld finished [took 62.2816s] +11/11/23 03:04:57| INFO atc_mc finished [took 56.1819s] +11/11/23 03:05:22| INFO mul_sld finished [took 96.8027s] +11/11/23 03:05:22| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs finished [took 100.0654s] +11/11/23 03:05:22| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs started +11/11/23 03:06:32| INFO ref finished [took 53.7892s] +11/11/23 03:06:37| INFO mul3w_sld finished [took 66.3243s] +11/11/23 03:06:40| INFO atc_mc finished [took 57.0767s] +11/11/23 03:06:48| INFO mul_sld finished [took 82.1666s] +11/11/23 03:06:48| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs finished [took 85.6326s] +11/11/23 03:06:48| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs started +11/11/23 03:07:59| INFO ref finished [took 53.4098s] +11/11/23 03:08:05| INFO mul3w_sld finished [took 67.3941s] +11/11/23 03:08:06| INFO atc_mc finished [took 56.8497s] +11/11/23 03:08:09| INFO mul_sld finished [took 77.4972s] +11/11/23 03:08:09| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs finished [took 81.1647s] +11/11/23 03:08:09| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs started +11/11/23 03:09:18| INFO ref finished [took 54.4416s] +11/11/23 03:09:23| INFO mul3w_sld finished [took 67.3565s] +11/11/23 03:09:25| INFO atc_mc finished [took 57.5687s] +11/11/23 03:09:29| INFO mul_sld finished [took 77.1110s] +11/11/23 03:09:29| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs finished [took 79.8726s] +11/11/23 03:09:29| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs started +11/11/23 03:10:38| INFO ref finished [took 54.2066s] +11/11/23 03:10:44| INFO mul3w_sld finished [took 66.9062s] +11/11/23 03:10:46| INFO atc_mc finished [took 57.1371s] +11/11/23 03:10:52| INFO mul_sld finished [took 79.7498s] +11/11/23 03:10:52| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs finished [took 83.1506s] +11/11/23 03:10:52| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs started +11/11/23 03:11:59| INFO ref finished [took 51.1698s] +11/11/23 03:12:03| INFO mul3w_sld finished [took 63.7260s] +11/11/23 03:12:07| INFO atc_mc finished [took 56.1393s] +11/11/23 03:12:15| INFO mul_sld finished [took 79.3176s] +11/11/23 03:12:15| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs finished [took 82.4614s] +11/11/23 03:12:15| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs started +11/11/23 03:13:23| INFO ref finished [took 51.5505s] +11/11/23 03:13:28| INFO mul3w_sld finished [took 64.8809s] +11/11/23 03:13:32| INFO atc_mc finished [took 56.2766s] +11/11/23 03:13:39| INFO mul_sld finished [took 80.9284s] +11/11/23 03:13:39| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs finished [took 84.2727s] +11/11/23 03:13:39| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs started +11/11/23 03:14:50| INFO ref finished [took 54.6314s] +11/11/23 03:14:55| INFO mul3w_sld finished [took 67.8281s] +11/11/23 03:14:58| INFO atc_mc finished [took 57.4433s] +11/11/23 03:15:04| INFO mul_sld finished [took 82.1945s] +11/11/23 03:15:04| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs finished [took 85.5484s] +11/11/23 03:15:04| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs started +11/11/23 03:16:12| INFO ref finished [took 54.0583s] +11/11/23 03:16:19| INFO mul3w_sld finished [took 65.9654s] +11/11/23 03:16:20| INFO atc_mc finished [took 56.7869s] +11/11/23 03:16:42| INFO mul_sld finished [took 94.5979s] +11/11/23 03:16:42| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs finished [took 97.8705s] +---------------------------------------------------------------------------------------------------- +11/11/23 14:55:30| INFO dataset rcv1_CCAT_9prevs +11/11/23 14:55:35| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs started +11/11/23 14:56:42| INFO ref finished [took 51.5446s] +11/11/23 14:56:45| INFO mul3w_sld finished [took 61.1724s] +11/11/23 14:56:49| INFO atc_mc finished [took 55.8947s] +11/11/23 14:57:16| INFO mul_sld finished [took 97.5932s] +11/11/23 14:57:16| INFO Dataset sample 0.10 of dataset rcv1_CCAT_9prevs finished [took 100.9322s] +11/11/23 14:57:16| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs started +11/11/23 14:58:25| INFO ref finished [took 52.3894s] +11/11/23 14:58:32| INFO mul3w_sld finished [took 66.8082s] +11/11/23 14:58:34| INFO atc_mc finished [took 57.1608s] +11/11/23 14:58:43| INFO mul_sld finished [took 82.8613s] +11/11/23 14:58:43| INFO Dataset sample 0.20 of dataset rcv1_CCAT_9prevs finished [took 86.2458s] +11/11/23 14:58:43| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs started +11/11/23 14:59:55| INFO ref finished [took 53.4860s] +11/11/23 15:00:00| INFO mul3w_sld finished [took 68.6692s] +11/11/23 15:00:02| INFO atc_mc finished [took 56.8460s] +11/11/23 15:00:04| INFO mul_sld finished [took 77.8829s] +11/11/23 15:00:04| INFO Dataset sample 0.30 of dataset rcv1_CCAT_9prevs finished [took 81.6584s] +11/11/23 15:00:04| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs started +11/11/23 15:01:12| INFO ref finished [took 52.5890s] +11/11/23 15:01:18| INFO mul3w_sld finished [took 66.3191s] +11/11/23 15:01:18| INFO atc_mc finished [took 55.8094s] +11/11/23 15:01:23| INFO mul_sld finished [took 76.2650s] +11/11/23 15:01:23| INFO Dataset sample 0.40 of dataset rcv1_CCAT_9prevs finished [took 78.8604s] +11/11/23 15:01:23| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs started +11/11/23 15:02:30| INFO ref finished [took 52.1273s] +11/11/23 15:02:39| INFO mul3w_sld finished [took 67.7736s] +11/11/23 15:02:41| INFO atc_mc finished [took 58.1392s] +11/11/23 15:02:47| INFO mul_sld finished [took 80.6840s] +11/11/23 15:02:47| INFO Dataset sample 0.50 of dataset rcv1_CCAT_9prevs finished [took 84.0856s] +11/11/23 15:02:47| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs started +11/11/23 15:03:54| INFO ref finished [took 51.3613s] +11/11/23 15:03:59| INFO mul3w_sld finished [took 64.3562s] +11/11/23 15:04:03| INFO atc_mc finished [took 57.0352s] +11/11/23 15:04:10| INFO mul_sld finished [took 79.8549s] +11/11/23 15:04:10| INFO Dataset sample 0.60 of dataset rcv1_CCAT_9prevs finished [took 82.9290s] +11/11/23 15:04:10| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs started +11/11/23 15:05:20| INFO ref finished [took 52.6105s] +11/11/23 15:05:25| INFO mul3w_sld finished [took 66.7591s] +11/11/23 15:05:27| INFO atc_mc finished [took 55.8870s] +11/11/23 15:05:34| INFO mul_sld finished [took 80.9824s] +11/11/23 15:05:34| INFO Dataset sample 0.70 of dataset rcv1_CCAT_9prevs finished [took 84.2673s] +11/11/23 15:05:34| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs started +11/11/23 15:06:45| INFO ref finished [took 53.6830s] +11/11/23 15:06:50| INFO mul3w_sld finished [took 67.4974s] +11/11/23 15:06:53| INFO atc_mc finished [took 57.2897s] +11/11/23 15:06:59| INFO mul_sld finished [took 81.3697s] +11/11/23 15:06:59| INFO Dataset sample 0.80 of dataset rcv1_CCAT_9prevs finished [took 84.7980s] +11/11/23 15:06:59| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs started +11/11/23 15:08:08| INFO ref finished [took 54.0902s] +11/11/23 15:08:14| INFO mul3w_sld finished [took 66.9136s] +11/11/23 15:08:16| INFO atc_mc finished [took 57.8269s] +11/11/23 15:08:39| INFO mul_sld finished [took 96.4137s] +11/11/23 15:08:39| INFO Dataset sample 0.90 of dataset rcv1_CCAT_9prevs finished [took 99.5541s] +---------------------------------------------------------------------------------------------------- +11/11/23 18:04:49| INFO dataset imdb_9prevs +11/11/23 18:05:00| INFO Dataset sample 0.10 of dataset imdb_9prevs started +11/11/23 18:05:30| INFO ref finished [took 26.1862s] +11/11/23 18:05:37| INFO atc_mc finished [took 32.4255s] +11/11/23 18:05:42| INFO mul3w_sld finished [took 38.9162s] +11/11/23 18:06:19| INFO mul_sld finished [took 76.8053s] +11/11/23 18:06:19| INFO Dataset sample 0.10 of dataset imdb_9prevs finished [took 79.1732s] +11/11/23 18:06:19| INFO Dataset sample 0.20 of dataset imdb_9prevs started +11/11/23 18:06:51| INFO ref finished [took 27.6356s] +11/11/23 18:06:58| INFO atc_mc finished [took 33.5521s] +11/11/23 18:07:01| INFO mul3w_sld finished [took 38.2698s] +11/11/23 18:07:26| INFO mul_sld finished [took 63.9553s] +11/11/23 18:07:26| INFO Dataset sample 0.20 of dataset imdb_9prevs finished [took 66.8514s] +11/11/23 18:07:26| INFO Dataset sample 0.30 of dataset imdb_9prevs started +11/11/23 18:08:02| INFO ref finished [took 27.3880s] +11/11/23 18:08:09| INFO atc_mc finished [took 34.5060s] +11/11/23 18:08:12| INFO mul3w_sld finished [took 38.3408s] +11/11/23 18:08:23| INFO mul_sld finished [took 50.5943s] +11/11/23 18:08:23| INFO Dataset sample 0.30 of dataset imdb_9prevs finished [took 57.8801s] +11/11/23 18:08:23| INFO Dataset sample 0.40 of dataset imdb_9prevs started +11/11/23 18:08:57| INFO ref finished [took 27.9013s] +11/11/23 18:09:03| INFO atc_mc finished [took 33.7677s] +11/11/23 18:09:06| INFO mul3w_sld finished [took 37.6649s] +11/11/23 18:09:18| INFO mul_sld finished [took 51.5975s] +11/11/23 18:09:18| INFO Dataset sample 0.40 of dataset imdb_9prevs finished [took 54.8989s] +11/11/23 18:09:18| INFO Dataset sample 0.50 of dataset imdb_9prevs started +11/11/23 18:09:53| INFO ref finished [took 28.6798s] +11/11/23 18:10:00| INFO atc_mc finished [took 35.3206s] +11/11/23 18:10:03| INFO mul3w_sld finished [took 38.9082s] +11/11/23 18:10:15| INFO mul_sld finished [took 52.0709s] +11/11/23 18:10:15| INFO Dataset sample 0.50 of dataset imdb_9prevs finished [took 56.2785s] +11/11/23 18:10:15| INFO Dataset sample 0.60 of dataset imdb_9prevs started +11/11/23 18:10:48| INFO ref finished [took 28.5387s] +11/11/23 18:10:55| INFO atc_mc finished [took 34.9152s] +11/11/23 18:10:58| INFO mul3w_sld finished [took 39.0343s] +11/11/23 18:11:07| INFO mul_sld finished [took 49.9013s] +11/11/23 18:11:07| INFO Dataset sample 0.60 of dataset imdb_9prevs finished [took 52.8028s] +11/11/23 18:11:07| INFO Dataset sample 0.70 of dataset imdb_9prevs started +11/11/23 18:11:43| INFO ref finished [took 29.2208s] +11/11/23 18:11:50| INFO atc_mc finished [took 36.2494s] +11/11/23 18:11:54| INFO mul3w_sld finished [took 39.4380s] +11/11/23 18:12:02| INFO mul_sld finished [took 50.3782s] +11/11/23 18:12:02| INFO Dataset sample 0.70 of dataset imdb_9prevs finished [took 54.9711s] +11/11/23 18:12:02| INFO Dataset sample 0.80 of dataset imdb_9prevs started +11/11/23 18:12:37| INFO ref finished [took 28.2535s] +11/11/23 18:12:45| INFO atc_mc finished [took 34.9431s] +11/11/23 18:12:47| INFO mul3w_sld finished [took 38.4049s] +11/11/23 18:12:56| INFO mul_sld finished [took 48.3663s] +11/11/23 18:12:56| INFO Dataset sample 0.80 of dataset imdb_9prevs finished [took 53.7749s] +11/11/23 18:12:56| INFO Dataset sample 0.90 of dataset imdb_9prevs started +11/11/23 18:13:28| INFO ref finished [took 27.5002s] +11/11/23 18:13:35| INFO atc_mc finished [took 34.2726s] +11/11/23 18:13:41| INFO mul3w_sld finished [took 41.9968s] +11/11/23 18:13:54| INFO mul_sld finished [took 56.7537s] +11/11/23 18:13:54| INFO Dataset sample 0.90 of dataset imdb_9prevs finished [took 58.1750s] diff --git a/quacc/data.py b/quacc/data.py index 75cd8b9..a422636 100644 --- a/quacc/data.py +++ b/quacc/data.py @@ -20,13 +20,20 @@ from quapy.data import LabelledCollection # +class ExtensionPolicy: + def __init__(self, collapse_false=False): + self.collapse_false = collapse_false + + class ExtendedData: def __init__( self, instances: np.ndarray | sp.csr_matrix, pred_proba: np.ndarray, ext: np.ndarray = None, + extpol=None, ): + self.extpol = ExtensionPolicy() if extpol is None else extpol self.b_instances_ = instances self.pred_proba_ = pred_proba self.ext_ = ext @@ -89,14 +96,31 @@ class ExtendedData: class ExtendedLabels: - def __init__(self, true: np.ndarray, pred: np.ndarray, ncl: np.ndarray): + def __init__( + self, + true: np.ndarray, + pred: np.ndarray, + ncl: np.ndarray, + extpol: ExtensionPolicy = None, + ): + self.extpol = ExtensionPolicy() if extpol is None else extpol self.true = true self.pred = pred self.ncl = ncl @property def y(self): - return self.true * self.ncl + self.pred + if self.extpol.collapse_false: + return self.true + self.pred + else: + return self.true * self.ncl + self.pred + + @property + def classes(self): + if self.extpol.collapse_false: + return np.arange(self.ncl + 1) + else: + return np.arange(self.ncl**2) def __getitem__(self, idx): return ExtendedLabels(self.true[idx], self.pred[idx], self.ncl) @@ -109,8 +133,10 @@ class ExtendedCollection(LabelledCollection): labels: np.ndarray, pred_proba: np.ndarray = None, ext: np.ndarray = None, + extpol=None, ): - e_data, e_labels, _classes = self.__extend_collection( + self.extpol = ExtensionPolicy() if extpol is None else extpol + e_data, e_labels = self.__extend_collection( instances=instances, labels=labels, pred_proba=pred_proba, @@ -118,16 +144,19 @@ class ExtendedCollection(LabelledCollection): ) self.e_data_ = e_data self.e_labels_ = e_labels - super().__init__(e_data.X, e_labels.y, classes=_classes) + super().__init__(e_data.X, e_labels.y, classes=e_labels.classes) @classmethod def from_lc( cls, lc: LabelledCollection, - predict_proba: np.ndarray, + pred_proba: np.ndarray, ext: np.ndarray = None, + extpol=None, ): - return ExtendedCollection(lc.X, lc.y, pred_proba=predict_proba, ext=ext) + return ExtendedCollection( + lc.X, lc.y, pred_proba=pred_proba, ext=ext, extpol=extpol + ) @property def pred_proba(self): @@ -145,6 +174,13 @@ class ExtendedCollection(LabelledCollection): def ey(self): return self.e_labels_ + def counts(self): + _counts = super().counts() + if self.extpol.collapse_false: + _counts = np.insert(_counts, 2, 0) + + return _counts + def split_by_pred(self): _ncl = len(self.pred_proba) _instances, _indexes = self.e_data_.split_by_pred(return_indexes=True) @@ -160,13 +196,14 @@ class ExtendedCollection(LabelledCollection): labels: np.ndarray, pred_proba: np.ndarray, ext: np.ndarray = None, - ) -> Tuple[ExtendedData, ExtendedLabels, np.ndarray]: - n_classes = np.unique(labels).shape[0] + extpol=None, + ) -> Tuple[ExtendedData, ExtendedLabels]: + n_classes = pred_proba.shape[1] # n_X = [ X | predicted probs. ] - e_instances = ExtendedData(instances, pred_proba, ext=ext) + e_instances = ExtendedData(instances, pred_proba, ext=ext, extpol=self.extpol) # n_y = (exptected y, predicted y) preds = np.argmax(pred_proba, axis=-1) - e_labels = ExtendedLabels(labels, preds, n_classes) + e_labels = ExtendedLabels(labels, preds, n_classes, extpol=self.extpol) - return e_instances, e_labels, np.arange(n_classes**2) + return e_instances, e_labels diff --git a/quacc/evaluation/method.py b/quacc/evaluation/method.py index 47854d2..e812b5c 100644 --- a/quacc/evaluation/method.py +++ b/quacc/evaluation/method.py @@ -76,6 +76,15 @@ def mul_sld(c_model, validation, protocol) -> EvaluationReport: ) +@method +def mul3w_sld(c_model, validation, protocol) -> EvaluationReport: + est = MCAE(c_model, SLD(LogisticRegression()), collapse_false=True).fit(validation) + return evaluation_report( + estimator=est, + protocol=protocol, + ) + + @method def binc_sld(c_model, validation, protocol) -> EvaluationReport: est = BQAE( @@ -102,6 +111,20 @@ def mulc_sld(c_model, validation, protocol) -> EvaluationReport: ) +@method +def mul3wc_sld(c_model, validation, protocol) -> EvaluationReport: + est = MCAE( + c_model, + SLD(LogisticRegression()), + confidence=["max_conf", "entropy"], + collapse_false=True, + ).fit(validation) + return evaluation_report( + estimator=est, + protocol=protocol, + ) + + @method def binmc_sld(c_model, validation, protocol) -> EvaluationReport: est = BQAE( @@ -188,6 +211,23 @@ def mul_sld_gs(c_model, validation, protocol) -> EvaluationReport: ) +@method +def mul3w_sld_gs(c_model, validation, protocol) -> EvaluationReport: + v_train, v_val = validation.split_stratified(0.6, random_state=0) + model = MCAE(c_model, SLD(LogisticRegression()), collapse_false=True) + est = GridSearchAE( + model=model, + param_grid=_sld_param_grid, + refit=False, + protocol=UPP(v_val, repeats=100), + verbose=True, + ).fit(v_train) + return evaluation_report( + estimator=est, + protocol=protocol, + ) + + @method def bin_sld_gsq(c_model, validation, protocol) -> EvaluationReport: est = BQAEgsq( diff --git a/quacc/evaluation/report.py b/quacc/evaluation/report.py index 22f16ad..4c30d40 100644 --- a/quacc/evaluation/report.py +++ b/quacc/evaluation/report.py @@ -1,3 +1,4 @@ +import pickle from pathlib import Path from typing import List, Tuple @@ -145,7 +146,12 @@ class CompReport: return avg_p def get_plots( - self, mode="delta", metric="acc", estimators=None, conf="default", stdev=False + self, + mode="delta", + metric="acc", + estimators=None, + conf="default", + return_fig=False, ) -> List[Tuple[str, Path]]: if mode == "delta": avg_data = self.avg_by_prevs(metric=metric, estimators=estimators) @@ -156,6 +162,7 @@ class CompReport: metric=metric, name=conf, train_prev=self.train_prev, + return_fig=return_fig, ) elif mode == "delta_stdev": avg_data = self.avg_by_prevs(metric=metric, estimators=estimators) @@ -168,6 +175,7 @@ class CompReport: name=conf, train_prev=self.train_prev, stdevs=st_data.T.to_numpy(), + return_fig=return_fig, ) elif mode == "diagonal": f_data = self.data(metric=metric + "_score", estimators=estimators) @@ -180,6 +188,7 @@ class CompReport: metric=metric, name=conf, train_prev=self.train_prev, + return_fig=return_fig, ) elif mode == "shift": _shift_data = self.shift_data(metric=metric, estimators=estimators) @@ -197,6 +206,7 @@ class CompReport: name=conf, train_prev=self.train_prev, counts=shift_counts.T.to_numpy(), + return_fig=return_fig, ) def to_md(self, conf="default", metric="acc", estimators=None, stdev=False) -> str: @@ -219,7 +229,6 @@ class CompReport: metric=metric, estimators=estimators, conf=conf, - stdev=stdev, ) res += f"![plot_{mode}]({op.relative_to(env.OUT_DIR).as_posix()})\n" @@ -287,6 +296,95 @@ class DatasetReport: self.add(cr) return self + def get_plots( + self, + data=None, + mode="delta_train", + metric="acc", + estimators=None, + conf="default", + return_fig=False, + ): + if mode == "delta_train": + _data = self.data(metric, estimators) if data is None else data + avg_on_train = _data.groupby(level=1).mean() + prevs_on_train = np.sort(avg_on_train.index.unique(0)) + return plot.plot_delta( + base_prevs=np.around( + [(1.0 - p, p) for p in prevs_on_train], decimals=2 + ), + columns=avg_on_train.columns.to_numpy(), + data=avg_on_train.T.to_numpy(), + metric=metric, + name=conf, + train_prev=None, + avg="train", + return_fig=return_fig, + ) + elif mode == "stdev_train": + _data = self.data(metric, estimators) if data is None else data + avg_on_train = _data.groupby(level=1).mean() + prevs_on_train = np.sort(avg_on_train.index.unique(0)) + stdev_on_train = _data.groupby(level=1).std() + return plot.plot_delta( + base_prevs=np.around( + [(1.0 - p, p) for p in prevs_on_train], decimals=2 + ), + columns=avg_on_train.columns.to_numpy(), + data=avg_on_train.T.to_numpy(), + metric=metric, + name=conf, + train_prev=None, + stdevs=stdev_on_train.T.to_numpy(), + avg="train", + return_fig=return_fig, + ) + elif mode == "delta_test": + _data = self.data(metric, estimators) if data is None else data + avg_on_test = _data.groupby(level=0).mean() + prevs_on_test = np.sort(avg_on_test.index.unique(0)) + return plot.plot_delta( + base_prevs=np.around([(1.0 - p, p) for p in prevs_on_test], decimals=2), + columns=avg_on_test.columns.to_numpy(), + data=avg_on_test.T.to_numpy(), + metric=metric, + name=conf, + train_prev=None, + avg="test", + return_fig=return_fig, + ) + elif mode == "stdev_test": + _data = self.data(metric, estimators) if data is None else data + avg_on_test = _data.groupby(level=0).mean() + prevs_on_test = np.sort(avg_on_test.index.unique(0)) + stdev_on_test = _data.groupby(level=0).std() + return plot.plot_delta( + base_prevs=np.around([(1.0 - p, p) for p in prevs_on_test], decimals=2), + columns=avg_on_test.columns.to_numpy(), + data=avg_on_test.T.to_numpy(), + metric=metric, + name=conf, + train_prev=None, + stdevs=stdev_on_test.T.to_numpy(), + avg="test", + return_fig=return_fig, + ) + elif mode == "shift": + _shift_data = self.shift_data(metric, estimators) if data is None else data + avg_shift = _shift_data.groupby(level=0).mean() + count_shift = _shift_data.groupby(level=0).count() + prevs_shift = np.sort(avg_shift.index.unique(0)) + return plot.plot_shift( + shift_prevs=np.around([(1.0 - p, p) for p in prevs_shift], decimals=2), + columns=avg_shift.columns.to_numpy(), + data=avg_shift.T.to_numpy(), + metric=metric, + name=conf, + train_prev=None, + counts=count_shift.T.to_numpy(), + return_fig=return_fig, + ) + def to_md(self, conf="default", metric="acc", estimators=[], stdev=False): res = f"# {self.name}\n\n" for cr in self.crs: @@ -300,95 +398,82 @@ class DatasetReport: ######################## avg on train ######################## res += "### avg on train\n" - avg_on_train = _data.groupby(level=1).mean() - prevs_on_train = np.sort(avg_on_train.index.unique(0)) - stdev_on_train = _data.groupby(level=1).std() if stdev else None avg_on_train_tbl = _data.groupby(level=1).mean() avg_on_train_tbl.loc["avg", :] = _data.mean() res += avg_on_train_tbl.to_html() + "\n\n" - delta_op = plot.plot_delta( - base_prevs=np.around([(1.0 - p, p) for p in prevs_on_train], decimals=2), - columns=avg_on_train.columns.to_numpy(), - data=avg_on_train.T.to_numpy(), + delta_op = self.get_plots( + data=_data, + mode="delta_train", metric=metric, - name=conf, - train_prev=None, - avg="train", + estimators=estimators, + conf=conf, ) res += f"![plot_delta]({delta_op.relative_to(env.OUT_DIR).as_posix()})\n" if stdev: - delta_stdev_op = plot.plot_delta( - base_prevs=np.around( - [(1.0 - p, p) for p in prevs_on_train], decimals=2 - ), - columns=avg_on_train.columns.to_numpy(), - data=avg_on_train.T.to_numpy(), + delta_stdev_op = self.get_plots( + data=_data, + mode="stdev_train", metric=metric, - name=conf, - train_prev=None, - stdevs=stdev_on_train.T.to_numpy(), - avg="train", + estimators=estimators, + conf=conf, ) res += f"![plot_delta_stdev]({delta_stdev_op.relative_to(env.OUT_DIR).as_posix()})\n" ######################## avg on test ######################## res += "### avg on test\n" - avg_on_test = _data.groupby(level=0).mean() - prevs_on_test = np.sort(avg_on_test.index.unique(0)) - stdev_on_test = _data.groupby(level=0).std() if stdev else None avg_on_test_tbl = _data.groupby(level=0).mean() avg_on_test_tbl.loc["avg", :] = _data.mean() res += avg_on_test_tbl.to_html() + "\n\n" - delta_op = plot.plot_delta( - base_prevs=np.around([(1.0 - p, p) for p in prevs_on_test], decimals=2), - columns=avg_on_test.columns.to_numpy(), - data=avg_on_test.T.to_numpy(), + delta_op = self.get_plots( + data=_data, + mode="delta_test", metric=metric, - name=conf, - train_prev=None, - avg="test", + estimators=estimators, + conf=conf, ) res += f"![plot_delta]({delta_op.relative_to(env.OUT_DIR).as_posix()})\n" if stdev: - delta_stdev_op = plot.plot_delta( - base_prevs=np.around([(1.0 - p, p) for p in prevs_on_test], decimals=2), - columns=avg_on_test.columns.to_numpy(), - data=avg_on_test.T.to_numpy(), + delta_stdev_op = self.get_plots( + data=_data, + mode="stdev_test", metric=metric, - name=conf, - train_prev=None, - stdevs=stdev_on_test.T.to_numpy(), - avg="test", + estimators=estimators, + conf=conf, ) res += f"![plot_delta_stdev]({delta_stdev_op.relative_to(env.OUT_DIR).as_posix()})\n" ######################## avg shift ######################## res += "### avg dataset shift\n" - avg_shift = _shift_data.groupby(level=0).mean() - count_shift = _shift_data.groupby(level=0).count() - prevs_shift = np.sort(avg_shift.index.unique(0)) - - shift_op = plot.plot_shift( - shift_prevs=np.around([(1.0 - p, p) for p in prevs_shift], decimals=2), - columns=avg_shift.columns.to_numpy(), - data=avg_shift.T.to_numpy(), + shift_op = self.get_plots( + data=_shift_data, + mode="shift", metric=metric, - name=conf, - train_prev=None, - counts=count_shift.T.to_numpy(), + estimators=estimators, + conf=conf, ) res += f"![plot_shift]({shift_op.relative_to(env.OUT_DIR).as_posix()})\n" return res + def pickle(self, pickle_path: Path): + with open(pickle_path, "wb") as f: + pickle.dump(self, f) + + @classmethod + def unpickle(cls, pickle_path: Path): + with open(pickle_path, "rb") as f: + dr = pickle.load(f) + + return dr + def __iter__(self): return (cr for cr in self.crs) diff --git a/quacc/main.py b/quacc/main.py index 87dd971..7490a22 100644 --- a/quacc/main.py +++ b/quacc/main.py @@ -25,6 +25,7 @@ def estimate_comparison(): dataset, estimators=CE.name[env.COMP_ESTIMATORS], ) + dr.pickle(env.OUT_DIR / f"{dataset.name}.pickle") except Exception as e: log.error(f"Evaluation over {dataset.name} failed. Exception: {e}") traceback(e) diff --git a/quacc/method/base.py b/quacc/method/base.py index 36411b7..25f21ae 100644 --- a/quacc/method/base.py +++ b/quacc/method/base.py @@ -8,7 +8,7 @@ from quapy.data import LabelledCollection from quapy.method.aggregative import BaseQuantifier from sklearn.base import BaseEstimator -from quacc.data import ExtendedCollection, ExtendedData +from quacc.data import ExtendedCollection, ExtendedData, ExtensionPolicy class BaseAccuracyEstimator(BaseQuantifier): @@ -19,6 +19,7 @@ class BaseAccuracyEstimator(BaseQuantifier): ): self.__check_classifier(classifier) self.quantifier = quantifier + self.extpol = ExtensionPolicy() def __check_classifier(self, classifier): if not hasattr(classifier, "predict_proba"): @@ -31,13 +32,15 @@ class BaseAccuracyEstimator(BaseQuantifier): if pred_proba is None: pred_proba = self.classifier.predict_proba(coll.X) - return ExtendedCollection.from_lc(coll, pred_proba=pred_proba) + return ExtendedCollection.from_lc( + coll, pred_proba=pred_proba, extpol=self.extpol + ) def _extend_instances(self, instances: np.ndarray | sp.csr_matrix, pred_proba=None): if pred_proba is None: pred_proba = self.classifier.predict_proba(instances) - return ExtendedData(instances, pred_proba=pred_proba) + return ExtendedData(instances, pred_proba=pred_proba, extpol=self.extpol) @abstractmethod def fit(self, train: LabelledCollection | ExtendedCollection): @@ -106,7 +109,9 @@ class ConfidenceBasedAccuracyEstimator(BaseAccuracyEstimator): pred_proba = self.classifier.predict_proba(coll.X) _ext = self.__get_ext(pred_proba) - return ExtendedCollection.from_lc(coll, pred_proba=pred_proba, ext=_ext) + return ExtendedCollection.from_lc( + coll, pred_proba=pred_proba, ext=_ext, extpol=self.extpol + ) def _extend_instances( self, @@ -117,7 +122,9 @@ class ConfidenceBasedAccuracyEstimator(BaseAccuracyEstimator): pred_proba = self.classifier.predict_proba(instances) _ext = self.__get_ext(pred_proba) - return ExtendedData(instances, pred_proba=pred_proba, ext=_ext) + return ExtendedData( + instances, pred_proba=pred_proba, ext=_ext, extpol=self.extpol + ) class MultiClassAccuracyEstimator(ConfidenceBasedAccuracyEstimator): @@ -126,6 +133,7 @@ class MultiClassAccuracyEstimator(ConfidenceBasedAccuracyEstimator): classifier: BaseEstimator, quantifier: BaseQuantifier, confidence: str = None, + collapse_false=False, ): super().__init__( classifier=classifier, @@ -133,6 +141,7 @@ class MultiClassAccuracyEstimator(ConfidenceBasedAccuracyEstimator): confidence=confidence, ) self.e_train = None + self.extpol = ExtensionPolicy(collapse_false=collapse_false) def fit(self, train: LabelledCollection): self.e_train = self.extend(train) @@ -149,7 +158,13 @@ class MultiClassAccuracyEstimator(ConfidenceBasedAccuracyEstimator): e_inst = self._extend_instances(instances) estim_prev = self.quantifier.quantify(e_inst.X) - return self._check_prevalence_classes(estim_prev, self.quantifier.classes_) + estim_prev = self._check_prevalence_classes( + estim_prev, self.quantifier.classes_ + ) + if self.extpol.collapse_false: + estim_prev = np.insert(estim_prev, 2, 0.0) + + return estim_prev def _check_prevalence_classes(self, estim_prev, estim_classes) -> np.ndarray: true_classes = self.e_train.classes_ @@ -158,6 +173,10 @@ class MultiClassAccuracyEstimator(ConfidenceBasedAccuracyEstimator): estim_prev = np.insert(estim_prev, _cls, [0.0], axis=0) return estim_prev + @property + def collapse_false(self): + return self.extpol.collapse_false + class BinaryQuantifierAccuracyEstimator(ConfidenceBasedAccuracyEstimator): def __init__( diff --git a/quacc/method/model_selection.py b/quacc/method/model_selection.py index f0262c1..c43dfd3 100644 --- a/quacc/method/model_selection.py +++ b/quacc/method/model_selection.py @@ -174,6 +174,7 @@ class GridSearchAE(BaseAccuracyEstimator): except Exception as e: self._sout(f"something went wrong for config {params}; skipping:") self._sout(f"\tException: {e}") + score = None return params, score, model diff --git a/quacc/plot.py b/quacc/plot.py index 471c1cb..18a7d8a 100644 --- a/quacc/plot.py +++ b/quacc/plot.py @@ -29,6 +29,7 @@ def plot_delta( train_prev=None, legend=True, avg=None, + return_fig=False, ) -> Path: _base_title = "delta_stdev" if stdevs is not None else "delta" if train_prev is not None: @@ -84,9 +85,12 @@ def plot_delta( if legend: ax.legend(loc="center left", bbox_to_anchor=(1, 0.5)) + + if return_fig: + return fig + output_path = env.PLOT_OUT_DIR / f"{title}.png" fig.savefig(output_path, bbox_inches="tight") - return output_path @@ -100,6 +104,7 @@ def plot_diagonal( name="default", train_prev=None, legend=True, + return_fig=False, ): if train_prev is not None: t_prev_pos = int(round(train_prev[pos_class] * 100)) @@ -169,6 +174,10 @@ def plot_diagonal( if legend: ax.legend(loc="center left", bbox_to_anchor=(1, 0.5)) + + if return_fig: + return fig + output_path = env.PLOT_OUT_DIR / f"{title}.png" fig.savefig(output_path, bbox_inches="tight") return output_path @@ -185,6 +194,7 @@ def plot_shift( name="default", train_prev=None, legend=True, + return_fig=False, ) -> Path: if train_prev is not None: t_prev_pos = int(round(train_prev[pos_class] * 100)) @@ -233,6 +243,10 @@ def plot_shift( if legend: ax.legend(loc="center left", bbox_to_anchor=(1, 0.5)) + + if return_fig: + return fig + output_path = env.PLOT_OUT_DIR / f"{title}.png" fig.savefig(output_path, bbox_inches="tight") diff --git a/remote.py b/remote.py index 4c538f6..3281f76 100644 --- a/remote.py +++ b/remote.py @@ -21,10 +21,12 @@ __to_sync_up = { "dir": [ "quacc", "baselines", + "qcpanel", ], "file": [ "conf.yaml", "run.py", + "pyproject.toml", ], } __to_sync_down = { @@ -60,10 +62,13 @@ def put_dir(sftp: paramiko.SFTPClient, from_: Path, to_: Path): elif (from_ / f).is_dir(): _ex_list += put_dir(sftp, from_ / f, to_ / f) - to_list = sftp.listdir(str(to_)) - for f in to_list: - if f not in from_list: - _ex_list += prune_remote(sftp, to_ / f) + try: + to_list = sftp.listdir(str(to_)) + for f in to_list: + if f not in from_list: + _ex_list += prune_remote(sftp, to_ / f) + except FileNotFoundError: + pass return _ex_list @@ -78,10 +83,10 @@ def get_dir(sftp: paramiko.SFTPClient, from_: Path, to_: Path): mode = sftp.stat(str(from_ / f)).st_mode if stat.S_ISDIR(mode): _ex_list += get_dir(sftp, from_ / f, to_ / f) - _ex_list.append([sftp.rmdir, str(from_ / f)]) + # _ex_list.append([sftp.rmdir, str(from_ / f)]) elif stat.S_ISREG(mode): _ex_list.append([sftp.get, str(from_ / f), str(to_ / f)]) - _ex_list.append([sftp.remove, str(from_ / f)]) + # _ex_list.append([sftp.remove, str(from_ / f)]) return _ex_list