gitignore updated

This commit is contained in:
Lorenzo Volpi 2023-10-19 02:34:41 +02:00
parent 7575b95a96
commit cb8388cc9a
3 changed files with 9 additions and 73 deletions

1
.gitignore vendored
View File

@ -2,6 +2,7 @@
quavenv/*
*.pdf
quacc/__pycache__/*
quacc/evaluation/__pycache__/*
tests/__pycache__/*
garg22_ATC/__pycache__/*
guillory21_doc/__pycache__/*

View File

@ -1,4 +1,5 @@
import numpy as np
from sklearn.metrics import f1_score
def get_entropy(probs):
return np.sum( np.multiply(probs, np.log(probs + 1e-20)) , axis=1)
@ -31,4 +32,10 @@ def find_ATC_threshold(scores, labels):
def get_ATC_acc(thres, scores):
return np.mean(scores>=thres)*100.0
return np.mean(scores>=thres)
def get_ATC_f1(thres, scores, probs):
preds = np.argmax(probs, axis=-1)
estim_y = abs(1 - (scores>=thres)^preds)
return f1_score(estim_y, preds)

View File

@ -1,72 +0,0 @@
import numpy as np
#---------------------- utility functions used ----------------------------
def idx2onehot(a,k):
a=a.astype(int)
b = np.zeros((a.size, k))
b[np.arange(a.size), a] = 1
return b
def confusion_matrix(ytrue, ypred,k):
# C[i,j] denotes the frequency of ypred = i, ytrue = j.
n = ytrue.size
C = np.dot(idx2onehot(ypred,k).T,idx2onehot(ytrue,k))
return C/n
def confusion_matrix_probabilistic(ytrue, ypred,k):
# Input is probabilistic classifiers in forms of n by k matrices
n,d = np.shape(ypred)
C = np.dot(ypred.T, idx2onehot(ytrue,k))
return C/n
def calculate_marginal(y,k):
mu = np.zeros(shape=(k,1))
for i in range(k):
mu[i] = np.count_nonzero(y == i)
return mu/np.size(y)
def calculate_marginal_probabilistic(y,k):
return np.mean(y,axis=0)
def estimate_labelshift_ratio(ytrue_s, ypred_s, ypred_t,k):
if ypred_s.ndim == 2: # this indicates that it is probabilistic
C = confusion_matrix_probabilistic(ytrue_s,ypred_s,k)
mu_t = calculate_marginal_probabilistic(ypred_t, k)
else:
C = confusion_matrix(ytrue_s, ypred_s,k)
mu_t = calculate_marginal(ypred_t, k)
lamb = (1/min(len(ypred_s),len(ypred_t)))
wt = np.linalg.solve(np.dot(C.T, C)+lamb*np.eye(k), np.dot(C.T, mu_t))
return wt
def estimate_target_dist(wt, ytrue_s,k):
''' Input:
- wt: This is the output of estimate_labelshift_ratio)
- ytrue_s: This is the list of true labels from validation set
Output:
- An estimation of the true marginal distribution of the target set.
'''
mu_t = calculate_marginal(ytrue_s,k)
return wt*mu_t
# functions that convert beta to w and converge w to a corresponding weight function.
def beta_to_w(beta, y, k):
w = []
for i in range(k):
w.append(np.mean(beta[y.astype(int) == i]))
w = np.array(w)
return w
# a function that converts w to beta.
def w_to_beta(w,y):
return w[y.astype(int)]
def w_to_weightfunc(w):
return lambda x, y: w[y.astype(int)]
#----------------------------------------------------------------------------