added tests for data.py

This commit is contained in:
Lorenzo Volpi 2023-12-08 00:44:02 +01:00
parent 1d5507889b
commit de48da638a
1 changed files with 247 additions and 145 deletions

View File

@ -2,184 +2,286 @@ import numpy as np
import pytest
import scipy.sparse as sp
from quacc.data import ExtendedCollection
from quacc.data import (
ExtendedCollection,
ExtendedData,
ExtendedLabels,
ExtendedPrev,
ExtensionPolicy,
)
class TestExtendedCollection:
@pytest.mark.ext
@pytest.mark.extpol
class TestExtendedPolicy:
@pytest.mark.parametrize(
"instances,result",
"extpol,nbcl,result",
[
(ExtensionPolicy(), 2, np.array([0, 1, 2, 3])),
(ExtensionPolicy(collapse_false=True), 2, np.array([0, 1, 2])),
(ExtensionPolicy(), 3, np.array([0, 1, 2, 3, 4, 5, 6, 7, 8])),
(ExtensionPolicy(collapse_false=True), 3, np.array([0, 1, 2, 3])),
],
)
def test_qclasses(self, extpol, nbcl, result):
assert (result == extpol.qclasses(nbcl)).all()
@pytest.mark.parametrize(
"extpol,nbcl,result",
[
(ExtensionPolicy(), 2, np.array([0, 1, 2, 3])),
(ExtensionPolicy(collapse_false=True), 2, np.array([0, 1, 2, 3])),
(ExtensionPolicy(), 3, np.array([0, 1, 2, 3, 4, 5, 6, 7, 8])),
(
np.asarray(
[[0, 0.3, 0.7], [1, 0.54, 0.46], [2, 0.28, 0.72], [3, 0.6, 0.4]]
),
[np.asarray([1, 3]), np.asarray([0, 2])],
),
(
sp.csr_matrix(
[[0, 0.3, 0.7], [1, 0.54, 0.46], [2, 0.28, 0.72], [3, 0.6, 0.4]]
),
[np.asarray([1, 3]), np.asarray([0, 2])],
),
(
np.asarray([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
[np.asarray([], dtype=int), np.asarray([0, 1])],
),
(
sp.csr_matrix([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
[np.asarray([], dtype=int), np.asarray([0, 1])],
),
(
np.asarray([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
[np.asarray([0, 1]), np.asarray([], dtype=int)],
),
(
sp.csr_matrix([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
[np.asarray([0, 1]), np.asarray([], dtype=int)],
ExtensionPolicy(collapse_false=True),
3,
np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]),
),
],
)
def test__split_index_by_pred(self, instances, result):
ncl = 2
assert all(
np.array_equal(a, b)
for (a, b) in zip(
ExtendedCollection._split_index_by_pred(ncl, instances),
result,
)
)
def test_eclasses(self, extpol, nbcl, result):
assert (result == extpol.eclasses(nbcl)).all()
@pytest.mark.parametrize(
"instances,s_inst,norms",
"extpol,nbcl,result",
[
(
np.asarray(
[[0, 0.3, 0.7], [1, 0.54, 0.46], [2, 0.28, 0.72], [3, 0.6, 0.4]]
ExtensionPolicy(),
2,
(
np.array([0, 0, 1, 1]),
np.array([0, 1, 0, 1]),
),
[
np.asarray([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
np.asarray([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
],
[0.5, 0.5],
),
(
sp.csr_matrix(
[[0, 0.3, 0.7], [1, 0.54, 0.46], [2, 0.28, 0.72], [3, 0.6, 0.4]]
ExtensionPolicy(collapse_false=True),
2,
(
np.array([0, 1, 0]),
np.array([0, 1, 1]),
),
[
sp.csr_matrix([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
sp.csr_matrix([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
],
[0.5, 0.5],
),
(
np.asarray([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
[
np.asarray([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
np.asarray([], dtype=int),
],
[1.0, 0.0],
ExtensionPolicy(),
3,
(
np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]),
np.array([0, 1, 2, 0, 1, 2, 0, 1, 2]),
),
),
(
sp.csr_matrix([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
[
sp.csr_matrix([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
sp.csr_matrix([], dtype=int),
],
[1.0, 0.0],
),
(
np.asarray([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
[
np.asarray([], dtype=int),
np.asarray([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
],
[0.0, 1.0],
),
(
sp.csr_matrix([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
[
sp.csr_matrix([], dtype=int),
sp.csr_matrix([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
],
[0.0, 1.0],
ExtensionPolicy(collapse_false=True),
3,
(
np.array([0, 1, 2, 0]),
np.array([0, 1, 2, 1]),
),
),
],
)
def test_split_inst_by_pred(self, instances, s_inst, norms):
ncl = 2
_s_inst, _norms = ExtendedCollection.split_inst_by_pred(ncl, instances)
if isinstance(s_inst, np.ndarray):
assert all(np.array_equal(a, b) for (a, b) in zip(_s_inst, s_inst))
if isinstance(s_inst, sp.csr_matrix):
assert all((a != b).nnz == 0 for (a, b) in zip(_s_inst, s_inst))
assert all(a == b for (a, b) in zip(_norms, norms))
def test_matrix_idx(self, extpol, nbcl, result):
_midx = extpol.matrix_idx(nbcl)
assert len(_midx) == len(result)
assert all((idx == r).all() for idx, r in zip(_midx, result))
@pytest.mark.parametrize(
"instances,labels,inst0,lbl0,inst1,lbl1",
"extpol,nbcl,true,pred,result",
[
(
np.asarray(
[[0, 0.3, 0.7], [1, 0.54, 0.46], [2, 0.28, 0.72], [3, 0.6, 0.4]]
),
np.asarray([3, 0, 1, 2]),
np.asarray([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
np.asarray([0, 1]),
np.asarray([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
np.asarray([1, 0]),
ExtensionPolicy(),
2,
np.array([1, 0, 1, 1, 0, 0]),
np.array([1, 0, 0, 1, 1, 0]),
np.array([3, 0, 2, 3, 1, 0]),
),
(
sp.csr_matrix(
[[0, 0.3, 0.7], [1, 0.54, 0.46], [2, 0.28, 0.72], [3, 0.6, 0.4]]
),
np.asarray([3, 0, 1, 2]),
sp.csr_matrix([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
np.asarray([0, 1]),
sp.csr_matrix([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
np.asarray([1, 0]),
ExtensionPolicy(collapse_false=True),
2,
np.array([1, 0, 1, 1, 0, 0]),
np.array([1, 0, 0, 1, 1, 0]),
np.array([1, 0, 2, 1, 2, 0]),
),
(
np.asarray([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
np.asarray([3, 1]),
np.asarray([], dtype=int),
np.asarray([], dtype=int),
np.asarray([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
np.asarray([1, 0]),
ExtensionPolicy(),
3,
np.array([1, 2, 0, 1, 0, 2, 0, 1, 2]),
np.array([1, 0, 0, 0, 1, 1, 2, 2, 2]),
np.array([4, 6, 0, 3, 1, 7, 2, 5, 8]),
),
(
sp.csr_matrix([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
np.asarray([3, 1]),
sp.csr_matrix(np.empty((0, 0), dtype=int)),
np.asarray([], dtype=int),
sp.csr_matrix([[0, 0.3, 0.7], [2, 0.28, 0.72]]),
np.asarray([1, 0]),
),
(
np.asarray([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
np.asarray([0, 2]),
np.asarray([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
np.asarray([0, 1]),
np.asarray([], dtype=int),
np.asarray([], dtype=int),
),
(
sp.csr_matrix([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
np.asarray([0, 2]),
sp.csr_matrix([[1, 0.54, 0.46], [3, 0.6, 0.4]]),
np.asarray([0, 1]),
sp.csr_matrix(np.empty((0, 0), dtype=int)),
np.asarray([], dtype=int),
ExtensionPolicy(collapse_false=True),
3,
np.array([1, 2, 0, 1, 0, 2, 0, 1, 2]),
np.array([1, 0, 0, 0, 1, 1, 2, 2, 2]),
np.array([1, 3, 0, 3, 3, 3, 3, 3, 2]),
),
],
)
def test_split_by_pred(self, instances, labels, inst0, lbl0, inst1, lbl1):
ec = ExtendedCollection(instances, labels, classes=range(0, 4))
[ec0, ec1] = ec.split_by_pred()
if isinstance(instances, np.ndarray):
assert np.array_equal(ec0.X, inst0)
assert np.array_equal(ec1.X, inst1)
if isinstance(instances, sp.csr_matrix):
assert (ec0.X != inst0).nnz == 0
assert (ec1.X != inst1).nnz == 0
assert np.array_equal(ec0.y, lbl0)
assert np.array_equal(ec1.y, lbl1)
def test_ext_lbl(self, extpol, nbcl, true, pred, result):
vfun = extpol.ext_lbl(nbcl)
assert (vfun(true, pred) == result).all()
@pytest.mark.ext
@pytest.mark.extd
class TestExtendedData:
@pytest.mark.parametrize(
"pred_proba,result",
[
(
np.array([[0.3, 0.7], [0.54, 0.46], [0.28, 0.72], [0.6, 0.4]]),
[np.array([1, 3]), np.array([0, 2])],
),
(
np.array([[0.3, 0.7], [0.28, 0.72]]),
[np.array([]), np.array([0, 1])],
),
(
np.array([[0.54, 0.46], [0.6, 0.4]]),
[np.array([0, 1]), np.array([])],
),
(
np.array(
[
[0.25, 0.4, 0.35],
[0.24, 0.3, 0.46],
[0.61, 0.28, 0.11],
[0.4, 0.1, 0.5],
]
),
[np.array([2]), np.array([0]), np.array([1, 3])],
),
],
)
def test__split_index_by_pred(self, monkeypatch, pred_proba, result):
def mockinit(self, pred_proba):
self.pred_proba_ = pred_proba
monkeypatch.setattr(ExtendedData, "__init__", mockinit)
ed = ExtendedData(pred_proba)
_split_index = ed._ExtendedData__split_index_by_pred()
assert len(_split_index) == len(result)
assert all((a == b).all() for (a, b) in zip(_split_index, result))
@pytest.mark.ext
@pytest.mark.extl
class TestExtendedLabels:
@pytest.mark.parametrize(
"true,pred,nbcl,extpol,result",
[
(
np.array([1, 0, 0, 1, 1]),
np.array([1, 1, 0, 0, 1]),
2,
ExtensionPolicy(),
np.array([3, 1, 0, 2, 3]),
),
(
np.array([1, 0, 0, 1, 1]),
np.array([1, 1, 0, 0, 1]),
2,
ExtensionPolicy(collapse_false=True),
np.array([1, 2, 0, 2, 1]),
),
],
)
def test_y(self, true, pred, nbcl, extpol, result):
el = ExtendedLabels(true, pred, nbcl, extpol)
assert (el.y == result).all()
@pytest.mark.ext
@pytest.mark.extp
class TestExtendedPrev:
@pytest.mark.parametrize(
"flat,nbcl,extpol,q_classes,result",
[
(
np.array([0.2, 0, 0.8, 0]),
2,
ExtensionPolicy(),
[0, 1, 2, 3],
np.array([0.2, 0, 0.8, 0]),
),
(
np.array([0.2, 0.8]),
2,
ExtensionPolicy(),
[0, 3],
np.array([0.2, 0, 0, 0.8]),
),
(
np.array([0.2, 0.8]),
2,
ExtensionPolicy(collapse_false=True),
[0, 2],
np.array([0.2, 0, 0.8]),
),
(
np.array([0.1, 0.1, 0.6, 0.2]),
3,
ExtensionPolicy(),
[0, 1, 3, 5],
np.array([0.1, 0.1, 0, 0.6, 0, 0.2, 0, 0, 0]),
),
(
np.array([0.1, 0.1, 0.6]),
3,
ExtensionPolicy(collapse_false=True),
[0, 1, 2],
np.array([0.1, 0.1, 0.6, 0]),
),
],
)
def test__check_q_classes(self, monkeypatch, flat, nbcl, extpol, q_classes, result):
def mockinit(self, flat, nbcl, extpol):
self.flat = flat
self.nbcl = nbcl
self.extpol = extpol
monkeypatch.setattr(ExtendedPrev, "__init__", mockinit)
ep = ExtendedPrev(flat, nbcl, extpol)
ep._ExtendedPrev__check_q_classes(q_classes)
assert (ep.flat == result).all()
@pytest.mark.parametrize(
"flat,nbcl,extpol,result",
[
(
np.array([0.05, 0.1, 0.6, 0.25]),
2,
ExtensionPolicy(),
np.array([[0.05, 0.1], [0.6, 0.25]]),
),
(
np.array([0.05, 0.1, 0.85]),
2,
ExtensionPolicy(collapse_false=True),
np.array([[0.05, 0.85], [0, 0.1]]),
),
(
np.array([0.05, 0.1, 0.2, 0.15, 0.04, 0.06, 0.15, 0.14, 0.1]),
3,
ExtensionPolicy(),
np.array([[0.05, 0.1, 0.2], [0.15, 0.04, 0.06], [0.15, 0.14, 0.1]]),
),
(
np.array([0.05, 0.2, 0.65, 0.1]),
3,
ExtensionPolicy(collapse_false=True),
np.array([[0.05, 0.1, 0], [0, 0.2, 0], [0, 0, 0.65]]),
),
],
)
def test__build_matrix(self, monkeypatch, flat, nbcl, extpol, result):
def mockinit(self, flat, nbcl, extpol):
self.flat = flat
self.nbcl = nbcl
self.extpol = extpol
monkeypatch.setattr(ExtendedPrev, "__init__", mockinit)
ep = ExtendedPrev(flat, nbcl, extpol)
_matrix = ep._ExtendedPrev__build_matrix()
assert _matrix.shape == result.shape
assert (_matrix == result).all()