from statistics import mean import numpy as np import sklearn.metrics as metrics from quapy.data import LabelledCollection from quapy.protocol import ( AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol, ) from sklearn.base import BaseEstimator from sklearn.model_selection import cross_validate import elsahar19_rca.rca as rca import garg22_ATC.ATC_helper as atc import guillory21_doc.doc as doc import jiang18_trustscore.trustscore as trustscore from .report import EvaluationReport def kfcv( c_model: BaseEstimator, validation: LabelledCollection, protocol: AbstractStochasticSeededProtocol, predict_method="predict", ): c_model_predict = getattr(c_model, predict_method) scoring = ["accuracy", "f1_macro"] scores = cross_validate(c_model, validation.X, validation.y, scoring=scoring) acc_score = mean(scores["test_accuracy"]) f1_score = mean(scores["test_f1_macro"]) # ensure that the protocol returns a LabelledCollection for each iteration protocol.collator = OnLabelledCollectionProtocol.get_collator("labelled_collection") report = EvaluationReport(prefix="kfcv") for test in protocol(): test_preds = c_model_predict(test.X) meta_acc = abs(acc_score - metrics.accuracy_score(test.y, test_preds)) meta_f1 = abs(f1_score - metrics.f1_score(test.y, test_preds)) report.append_row( test.prevalence(), acc_score=(1.0 - acc_score), f1_score=f1_score, acc=meta_acc, f1=meta_f1, ) return report def reference( c_model: BaseEstimator, validation: LabelledCollection, protocol: AbstractStochasticSeededProtocol, ): protocol.collator = OnLabelledCollectionProtocol.get_collator("labelled_collection") c_model_predict = getattr(c_model, "predict_proba") report = EvaluationReport(prefix="ref") for test in protocol(): test_probs = c_model_predict(test.X) test_preds = np.argmax(test_probs, axis=-1) report.append_row( test.prevalence(), acc_score=(1 - metrics.accuracy_score(test.y, test_preds)), f1_score=metrics.f1_score(test.y, test_preds), ) return report def atc_mc( c_model: BaseEstimator, validation: LabelledCollection, protocol: AbstractStochasticSeededProtocol, predict_method="predict_proba", ): c_model_predict = getattr(c_model, predict_method) ## Load ID validation data probs and labels val_probs, val_labels = c_model_predict(validation.X), validation.y ## score function, e.g., negative entropy or argmax confidence val_scores = atc.get_max_conf(val_probs) val_preds = np.argmax(val_probs, axis=-1) _, atc_thres = atc.find_ATC_threshold(val_scores, val_labels == val_preds) # ensure that the protocol returns a LabelledCollection for each iteration protocol.collator = OnLabelledCollectionProtocol.get_collator("labelled_collection") report = EvaluationReport(prefix="atc_mc") for test in protocol(): ## Load OOD test data probs test_probs = c_model_predict(test.X) test_preds = np.argmax(test_probs, axis=-1) test_scores = atc.get_max_conf(test_probs) atc_accuracy = atc.get_ATC_acc(atc_thres, test_scores) meta_acc = abs(atc_accuracy - metrics.accuracy_score(test.y, test_preds)) f1_score = atc.get_ATC_f1(atc_thres, test_scores, test_probs) meta_f1 = abs(f1_score - metrics.f1_score(test.y, test_preds)) report.append_row( test.prevalence(), acc=meta_acc, acc_score=1.0 - atc_accuracy, f1_score=f1_score, f1=meta_f1, ) return report def atc_ne( c_model: BaseEstimator, validation: LabelledCollection, protocol: AbstractStochasticSeededProtocol, predict_method="predict_proba", ): c_model_predict = getattr(c_model, predict_method) ## Load ID validation data probs and labels val_probs, val_labels = c_model_predict(validation.X), validation.y ## score function, e.g., negative entropy or argmax confidence val_scores = atc.get_entropy(val_probs) val_preds = np.argmax(val_probs, axis=-1) _, atc_thres = atc.find_ATC_threshold(val_scores, val_labels == val_preds) # ensure that the protocol returns a LabelledCollection for each iteration protocol.collator = OnLabelledCollectionProtocol.get_collator("labelled_collection") report = EvaluationReport(prefix="atc_ne") for test in protocol(): ## Load OOD test data probs test_probs = c_model_predict(test.X) test_preds = np.argmax(test_probs, axis=-1) test_scores = atc.get_entropy(test_probs) atc_accuracy = atc.get_ATC_acc(atc_thres, test_scores) meta_acc = abs(atc_accuracy - metrics.accuracy_score(test.y, test_preds)) f1_score = atc.get_ATC_f1(atc_thres, test_scores, test_probs) meta_f1 = abs(f1_score - metrics.f1_score(test.y, test_preds)) report.append_row( test.prevalence(), acc=meta_acc, acc_score=(1.0 - atc_accuracy), f1_score=f1_score, f1=meta_f1, ) return report def trust_score( c_model: BaseEstimator, validation: LabelledCollection, test: LabelledCollection, predict_method="predict", ): c_model_predict = getattr(c_model, predict_method) test_pred = c_model_predict(test.X) trust_model = trustscore.TrustScore() trust_model.fit(validation.X, validation.y) return trust_model.get_score(test.X, test_pred) def doc_feat( c_model: BaseEstimator, validation: LabelledCollection, protocol: AbstractStochasticSeededProtocol, predict_method="predict_proba", ): c_model_predict = getattr(c_model, predict_method) val_probs, val_labels = c_model_predict(validation.X), validation.y val_scores = np.max(val_probs, axis=-1) val_preds = np.argmax(val_probs, axis=-1) v1acc = np.mean(val_preds == val_labels) * 100 # ensure that the protocol returns a LabelledCollection for each iteration protocol.collator = OnLabelledCollectionProtocol.get_collator("labelled_collection") report = EvaluationReport(prefix="doc_feat") for test in protocol(): test_probs = c_model_predict(test.X) test_preds = np.argmax(test_probs, axis=-1) test_scores = np.max(test_probs, axis=-1) score = (v1acc + doc.get_doc(val_scores, test_scores)) / 100.0 meta_acc = abs(score - metrics.accuracy_score(test.y, test_preds)) report.append_row(test.prevalence(), acc=meta_acc, acc_score=(1.0 - score)) return report def rca_score( c_model: BaseEstimator, validation: LabelledCollection, protocol: AbstractStochasticSeededProtocol, predict_method="predict", ): c_model_predict = getattr(c_model, predict_method) val_pred1 = c_model_predict(validation.X) # ensure that the protocol returns a LabelledCollection for each iteration protocol.collator = OnLabelledCollectionProtocol.get_collator("labelled_collection") report = EvaluationReport(prefix="rca") for test in protocol(): try: test_pred = c_model_predict(test.X) c_model2 = rca.clone_fit(c_model, test.X, test_pred) c_model2_predict = getattr(c_model2, predict_method) val_pred2 = c_model2_predict(validation.X) rca_score = rca.get_score(val_pred1, val_pred2, validation.y) meta_score = abs( rca_score - (1 - metrics.accuracy_score(test.y, test_pred)) ) report.append_row(test.prevalence(), acc=meta_score, acc_score=rca_score) except ValueError: report.append_row( test.prevalence(), acc=float("nan"), acc_score=float("nan") ) return report def rca_star_score( c_model: BaseEstimator, validation: LabelledCollection, protocol: AbstractStochasticSeededProtocol, predict_method="predict", ): c_model_predict = getattr(c_model, predict_method) validation1, validation2 = validation.split_stratified( train_prop=0.5, random_state=0 ) val1_pred = c_model_predict(validation1.X) c_model1 = rca.clone_fit(c_model, validation1.X, val1_pred) c_model1_predict = getattr(c_model1, predict_method) val2_pred1 = c_model1_predict(validation2.X) # ensure that the protocol returns a LabelledCollection for each iteration protocol.collator = OnLabelledCollectionProtocol.get_collator("labelled_collection") report = EvaluationReport(prefix="rca_star") for test in protocol(): try: test_pred = c_model_predict(test.X) c_model2 = rca.clone_fit(c_model, test.X, test_pred) c_model2_predict = getattr(c_model2, predict_method) val2_pred2 = c_model2_predict(validation2.X) rca_star_score = rca.get_score(val2_pred1, val2_pred2, validation2.y) meta_score = abs( rca_star_score - (1 - metrics.accuracy_score(test.y, test_pred)) ) report.append_row( test.prevalence(), acc=meta_score, acc_score=rca_star_score ) except ValueError: report.append_row( test.prevalence(), acc=float("nan"), acc_score=float("nan") ) return report