86 lines
2.5 KiB
Python
86 lines
2.5 KiB
Python
from functools import wraps
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import quapy as qp
|
|
|
|
from quacc.data import ExtendedPrev
|
|
|
|
|
|
def from_name(err_name):
|
|
assert err_name in ERROR_NAMES, f"unknown error {err_name}"
|
|
callable_error = globals()[err_name]
|
|
return callable_error
|
|
|
|
|
|
# def f1(prev):
|
|
# # https://github.com/dice-group/gerbil/wiki/Precision,-Recall-and-F1-measure
|
|
# if prev[0] == 0 and prev[1] == 0 and prev[2] == 0:
|
|
# return 1.0
|
|
# elif prev[0] == 0 and prev[1] > 0 and prev[2] == 0:
|
|
# return 0.0
|
|
# elif prev[0] == 0 and prev[1] == 0 and prev[2] > 0:
|
|
# return float('NaN')
|
|
# else:
|
|
# recall = prev[0] / (prev[0] + prev[1])
|
|
# precision = prev[0] / (prev[0] + prev[2])
|
|
# return 2 * (precision * recall) / (precision + recall)
|
|
|
|
|
|
def nae(prevs: np.ndarray, prevs_hat: np.ndarray) -> np.ndarray:
|
|
_ae = qp.error.ae(prevs, prevs_hat)
|
|
# _zae = (2.0 * (1.0 - prevs.min())) / prevs.shape[1]
|
|
_zae = 2.0 / prevs.shape[1]
|
|
return _ae / _zae
|
|
|
|
|
|
def f1(prev: np.ndarray | ExtendedPrev) -> float:
|
|
if isinstance(prev, ExtendedPrev):
|
|
prev = prev.A
|
|
|
|
def _score(idx):
|
|
_tp = prev[idx, idx]
|
|
_fn = prev[idx, :].sum() - _tp
|
|
_fp = prev[:, idx].sum() - _tp
|
|
_den = 2.0 * _tp + _fp + _fn
|
|
return 0.0 if _den == 0.0 else (2.0 * _tp) / _den
|
|
|
|
if prev.shape[0] == 2:
|
|
return _score(1)
|
|
else:
|
|
_idxs = np.arange(prev.shape[0])
|
|
return np.array([_score(idx) for idx in _idxs]).mean()
|
|
|
|
|
|
def f1e(prev):
|
|
return 1 - f1(prev)
|
|
|
|
|
|
def acc(prev: np.ndarray | ExtendedPrev) -> float:
|
|
if isinstance(prev, ExtendedPrev):
|
|
prev = prev.A
|
|
return np.diag(prev).sum() / prev.sum()
|
|
|
|
|
|
def accd(
|
|
true_prevs: List[np.ndarray | ExtendedPrev],
|
|
estim_prevs: List[np.ndarray | ExtendedPrev],
|
|
) -> np.ndarray:
|
|
a_tp = np.array([acc(tp) for tp in true_prevs])
|
|
a_ep = np.array([acc(ep) for ep in estim_prevs])
|
|
return np.abs(a_tp - a_ep)
|
|
|
|
|
|
def maccd(
|
|
true_prevs: List[np.ndarray | ExtendedPrev],
|
|
estim_prevs: List[np.ndarray | ExtendedPrev],
|
|
) -> float:
|
|
return accd(true_prevs, estim_prevs).mean()
|
|
|
|
|
|
ACCURACY_ERROR = {maccd}
|
|
ACCURACY_ERROR_SINGLE = {accd}
|
|
ACCURACY_ERROR_NAMES = {func.__name__ for func in ACCURACY_ERROR}
|
|
ACCURACY_ERROR_SINGLE_NAMES = {func.__name__ for func in ACCURACY_ERROR_SINGLE}
|
|
ERROR_NAMES = ACCURACY_ERROR_NAMES | ACCURACY_ERROR_SINGLE_NAMES
|