208 lines
5.8 KiB
Python
208 lines
5.8 KiB
Python
from typing import List, Tuple
|
|
|
|
import numpy as np
|
|
import scipy.sparse as sp
|
|
from quapy.data import LabelledCollection
|
|
|
|
# Extended classes
|
|
#
|
|
# 0 ~ True 0
|
|
# 1 ~ False 1
|
|
# 2 ~ False 0
|
|
# 3 ~ True 1
|
|
# _____________________
|
|
# | | |
|
|
# | True 0 | False 1 |
|
|
# |__________|__________|
|
|
# | | |
|
|
# | False 0 | True 1 |
|
|
# |__________|__________|
|
|
#
|
|
|
|
|
|
class ExtensionPolicy:
|
|
def __init__(self, collapse_false=False):
|
|
self.collapse_false = collapse_false
|
|
|
|
|
|
class ExtendedData:
|
|
def __init__(
|
|
self,
|
|
instances: np.ndarray | sp.csr_matrix,
|
|
pred_proba: np.ndarray,
|
|
ext: np.ndarray = None,
|
|
extpol=None,
|
|
):
|
|
self.extpol = ExtensionPolicy() if extpol is None else extpol
|
|
self.b_instances_ = instances
|
|
self.pred_proba_ = pred_proba
|
|
self.ext_ = ext
|
|
self.instances = self.__extend_instances(instances, pred_proba, ext=ext)
|
|
|
|
def __extend_instances(
|
|
self,
|
|
instances: np.ndarray | sp.csr_matrix,
|
|
pred_proba: np.ndarray,
|
|
ext: np.ndarray = None,
|
|
) -> np.ndarray | sp.csr_matrix:
|
|
to_append = ext
|
|
if ext is None:
|
|
to_append = pred_proba
|
|
|
|
if isinstance(instances, sp.csr_matrix):
|
|
_to_append = sp.csr_matrix(to_append)
|
|
n_x = sp.hstack([instances, _to_append])
|
|
elif isinstance(instances, np.ndarray):
|
|
n_x = np.concatenate((instances, to_append), axis=1)
|
|
else:
|
|
raise ValueError("Unsupported matrix format")
|
|
|
|
return n_x
|
|
|
|
@property
|
|
def X(self):
|
|
return self.instances
|
|
|
|
def __split_index_by_pred(self) -> List[np.ndarray]:
|
|
_pred_label = np.argmax(self.pred_proba_, axis=1)
|
|
|
|
return [
|
|
(_pred_label == cl).nonzero()[0]
|
|
for cl in np.arange(self.pred_proba_.shape[1])
|
|
]
|
|
|
|
def split_by_pred(self, return_indexes=False):
|
|
def _empty_matrix():
|
|
if isinstance(self.instances, np.ndarray):
|
|
return np.asarray([], dtype=int)
|
|
elif isinstance(self.instances, sp.csr_matrix):
|
|
return sp.csr_matrix(np.empty((0, 0), dtype=int))
|
|
|
|
_indexes = self.__split_index_by_pred()
|
|
_instances = [
|
|
self.instances[ind] if ind.shape[0] > 0 else _empty_matrix()
|
|
for ind in _indexes
|
|
]
|
|
|
|
if return_indexes:
|
|
return _instances, _indexes
|
|
|
|
return _instances
|
|
|
|
def __len__(self):
|
|
return self.instances.shape[0]
|
|
|
|
|
|
class ExtendedLabels:
|
|
def __init__(
|
|
self,
|
|
true: np.ndarray,
|
|
pred: np.ndarray,
|
|
ncl: np.ndarray,
|
|
extpol: ExtensionPolicy = None,
|
|
):
|
|
self.extpol = ExtensionPolicy() if extpol is None else extpol
|
|
self.true = true
|
|
self.pred = pred
|
|
self.ncl = ncl
|
|
|
|
@property
|
|
def y(self):
|
|
if self.extpol.collapse_false:
|
|
return self.true + self.pred
|
|
else:
|
|
return self.true * self.ncl + self.pred
|
|
|
|
@property
|
|
def classes(self):
|
|
if self.extpol.collapse_false:
|
|
return np.arange(self.ncl + 1)
|
|
else:
|
|
return np.arange(self.ncl**2)
|
|
|
|
def __getitem__(self, idx):
|
|
return ExtendedLabels(self.true[idx], self.pred[idx], self.ncl)
|
|
|
|
|
|
class ExtendedCollection(LabelledCollection):
|
|
def __init__(
|
|
self,
|
|
instances: np.ndarray | sp.csr_matrix,
|
|
labels: np.ndarray,
|
|
pred_proba: np.ndarray = None,
|
|
ext: np.ndarray = None,
|
|
extpol=None,
|
|
):
|
|
self.extpol = ExtensionPolicy() if extpol is None else extpol
|
|
e_data, e_labels = self.__extend_collection(
|
|
instances=instances,
|
|
labels=labels,
|
|
pred_proba=pred_proba,
|
|
ext=ext,
|
|
)
|
|
self.e_data_ = e_data
|
|
self.e_labels_ = e_labels
|
|
super().__init__(e_data.X, e_labels.y, classes=e_labels.classes)
|
|
|
|
@classmethod
|
|
def from_lc(
|
|
cls,
|
|
lc: LabelledCollection,
|
|
pred_proba: np.ndarray,
|
|
ext: np.ndarray = None,
|
|
extpol=None,
|
|
):
|
|
return ExtendedCollection(
|
|
lc.X, lc.y, pred_proba=pred_proba, ext=ext, extpol=extpol
|
|
)
|
|
|
|
@property
|
|
def pred_proba(self):
|
|
return self.e_data_.pred_proba_
|
|
|
|
@property
|
|
def ext(self):
|
|
return self.e_data_.ext_
|
|
|
|
@property
|
|
def eX(self):
|
|
return self.e_data_
|
|
|
|
@property
|
|
def ey(self):
|
|
return self.e_labels_
|
|
|
|
def counts(self):
|
|
_counts = super().counts()
|
|
if self.extpol.collapse_false:
|
|
_counts = np.insert(_counts, 2, 0)
|
|
|
|
return _counts
|
|
|
|
def split_by_pred(self):
|
|
_ncl = self.pred_proba.shape[1]
|
|
_instances, _indexes = self.e_data_.split_by_pred(return_indexes=True)
|
|
_labels = [self.ey[ind] for ind in _indexes]
|
|
return [
|
|
LabelledCollection(inst, lbl.true, classes=range(0, _ncl))
|
|
for inst, lbl in zip(_instances, _labels)
|
|
]
|
|
|
|
def __extend_collection(
|
|
self,
|
|
instances: sp.csr_matrix | np.ndarray,
|
|
labels: np.ndarray,
|
|
pred_proba: np.ndarray,
|
|
ext: np.ndarray = None,
|
|
extpol=None,
|
|
) -> Tuple[ExtendedData, ExtendedLabels]:
|
|
n_classes = pred_proba.shape[1]
|
|
# n_X = [ X | predicted probs. ]
|
|
e_instances = ExtendedData(instances, pred_proba, ext=ext, extpol=self.extpol)
|
|
|
|
# n_y = (exptected y, predicted y)
|
|
preds = np.argmax(pred_proba, axis=-1)
|
|
e_labels = ExtendedLabels(labels, preds, n_classes, extpol=self.extpol)
|
|
|
|
return e_instances, e_labels
|