QuAcc/quacc/data.py

208 lines
5.8 KiB
Python

from typing import List, Tuple
import numpy as np
import scipy.sparse as sp
from quapy.data import LabelledCollection
# Extended classes
#
# 0 ~ True 0
# 1 ~ False 1
# 2 ~ False 0
# 3 ~ True 1
# _____________________
# | | |
# | True 0 | False 1 |
# |__________|__________|
# | | |
# | False 0 | True 1 |
# |__________|__________|
#
class ExtensionPolicy:
def __init__(self, collapse_false=False):
self.collapse_false = collapse_false
class ExtendedData:
def __init__(
self,
instances: np.ndarray | sp.csr_matrix,
pred_proba: np.ndarray,
ext: np.ndarray = None,
extpol=None,
):
self.extpol = ExtensionPolicy() if extpol is None else extpol
self.b_instances_ = instances
self.pred_proba_ = pred_proba
self.ext_ = ext
self.instances = self.__extend_instances(instances, pred_proba, ext=ext)
def __extend_instances(
self,
instances: np.ndarray | sp.csr_matrix,
pred_proba: np.ndarray,
ext: np.ndarray = None,
) -> np.ndarray | sp.csr_matrix:
to_append = ext
if ext is None:
to_append = pred_proba
if isinstance(instances, sp.csr_matrix):
_to_append = sp.csr_matrix(to_append)
n_x = sp.hstack([instances, _to_append])
elif isinstance(instances, np.ndarray):
n_x = np.concatenate((instances, to_append), axis=1)
else:
raise ValueError("Unsupported matrix format")
return n_x
@property
def X(self):
return self.instances
def __split_index_by_pred(self) -> List[np.ndarray]:
_pred_label = np.argmax(self.pred_proba_, axis=1)
return [
(_pred_label == cl).nonzero()[0]
for cl in np.arange(self.pred_proba_.shape[1])
]
def split_by_pred(self, return_indexes=False):
def _empty_matrix():
if isinstance(self.instances, np.ndarray):
return np.asarray([], dtype=int)
elif isinstance(self.instances, sp.csr_matrix):
return sp.csr_matrix(np.empty((0, 0), dtype=int))
_indexes = self.__split_index_by_pred()
_instances = [
self.instances[ind] if ind.shape[0] > 0 else _empty_matrix()
for ind in _indexes
]
if return_indexes:
return _instances, _indexes
return _instances
def __len__(self):
return self.instances.shape[0]
class ExtendedLabels:
def __init__(
self,
true: np.ndarray,
pred: np.ndarray,
ncl: np.ndarray,
extpol: ExtensionPolicy = None,
):
self.extpol = ExtensionPolicy() if extpol is None else extpol
self.true = true
self.pred = pred
self.ncl = ncl
@property
def y(self):
if self.extpol.collapse_false:
return self.true + self.pred
else:
return self.true * self.ncl + self.pred
@property
def classes(self):
if self.extpol.collapse_false:
return np.arange(self.ncl + 1)
else:
return np.arange(self.ncl**2)
def __getitem__(self, idx):
return ExtendedLabels(self.true[idx], self.pred[idx], self.ncl)
class ExtendedCollection(LabelledCollection):
def __init__(
self,
instances: np.ndarray | sp.csr_matrix,
labels: np.ndarray,
pred_proba: np.ndarray = None,
ext: np.ndarray = None,
extpol=None,
):
self.extpol = ExtensionPolicy() if extpol is None else extpol
e_data, e_labels = self.__extend_collection(
instances=instances,
labels=labels,
pred_proba=pred_proba,
ext=ext,
)
self.e_data_ = e_data
self.e_labels_ = e_labels
super().__init__(e_data.X, e_labels.y, classes=e_labels.classes)
@classmethod
def from_lc(
cls,
lc: LabelledCollection,
pred_proba: np.ndarray,
ext: np.ndarray = None,
extpol=None,
):
return ExtendedCollection(
lc.X, lc.y, pred_proba=pred_proba, ext=ext, extpol=extpol
)
@property
def pred_proba(self):
return self.e_data_.pred_proba_
@property
def ext(self):
return self.e_data_.ext_
@property
def eX(self):
return self.e_data_
@property
def ey(self):
return self.e_labels_
def counts(self):
_counts = super().counts()
if self.extpol.collapse_false:
_counts = np.insert(_counts, 2, 0)
return _counts
def split_by_pred(self):
_ncl = self.pred_proba.shape[1]
_instances, _indexes = self.e_data_.split_by_pred(return_indexes=True)
_labels = [self.ey[ind] for ind in _indexes]
return [
LabelledCollection(inst, lbl.true, classes=range(0, _ncl))
for inst, lbl in zip(_instances, _labels)
]
def __extend_collection(
self,
instances: sp.csr_matrix | np.ndarray,
labels: np.ndarray,
pred_proba: np.ndarray,
ext: np.ndarray = None,
extpol=None,
) -> Tuple[ExtendedData, ExtendedLabels]:
n_classes = pred_proba.shape[1]
# n_X = [ X | predicted probs. ]
e_instances = ExtendedData(instances, pred_proba, ext=ext, extpol=self.extpol)
# n_y = (exptected y, predicted y)
preds = np.argmax(pred_proba, axis=-1)
e_labels = ExtendedLabels(labels, preds, n_classes, extpol=self.extpol)
return e_instances, e_labels