QuAcc/quacc/evaluation/comp.py

122 lines
3.7 KiB
Python

import os
import time
from traceback import print_exception as traceback
import numpy as np
import pandas as pd
import quapy as qp
from joblib import Parallel, delayed
from quapy.protocol import APP
from sklearn.linear_model import LogisticRegression
from quacc import logger
from quacc.dataset import Dataset
from quacc.environment import env
from quacc.evaluation.estimators import CE
from quacc.evaluation.report import CompReport, DatasetReport
from quacc.utils import parallel
# from quacc.logger import logger, logger_manager
# from quacc.evaluation.worker import WorkerArgs, estimate_worker
pd.set_option("display.float_format", "{:.4f}".format)
# qp.environ["SAMPLE_SIZE"] = env.SAMPLE_SIZE
def estimate_worker(_estimate, train, validation, test, q=None):
# qp.environ["SAMPLE_SIZE"] = env.SAMPLE_SIZE
log = logger.setup_worker_logger(q)
model = LogisticRegression()
model.fit(*train.Xy)
protocol = APP(
test,
n_prevalences=env.PROTOCOL_N_PREVS,
repeats=env.PROTOCOL_REPEATS,
return_type="labelled_collection",
random_state=env._R_SEED,
)
start = time.time()
try:
result = _estimate(model, validation, protocol)
except Exception as e:
log.warning(f"Method {_estimate.name} failed. Exception: {e}")
traceback(e)
return None
result.time = time.time() - start
log.info(f"{_estimate.name} finished [took {result.time:.4f}s]")
logger.logger_manager().rm_worker()
return result
def split_tasks(estimators, train, validation, test, q):
_par, _seq = [], []
for estim in estimators:
if hasattr(estim, "nocall"):
continue
_task = [estim, train, validation, test]
match estim.name:
case n if n.endswith("_gs"):
_seq.append(_task)
case _:
_par.append(_task + [q])
return _par, _seq
def evaluate_comparison(dataset: Dataset, estimators=None) -> DatasetReport:
# log = Logger.logger()
log = logger.logger()
# with multiprocessing.Pool(1) as pool:
__pool_size = round(os.cpu_count() * 0.8)
# with multiprocessing.Pool(__pool_size) as pool:
dr = DatasetReport(dataset.name)
log.info(f"dataset {dataset.name} [pool size: {__pool_size}]")
for d in dataset():
log.info(
f"Dataset sample {np.around(d.train_prev, decimals=2)} "
f"of dataset {dataset.name} started"
)
par_tasks, seq_tasks = split_tasks(
CE.func[estimators],
d.train,
d.validation,
d.test,
logger.logger_manager().q,
)
try:
tstart = time.time()
results = parallel(estimate_worker, par_tasks, n_jobs=env.N_JOBS, _env=env)
results += parallel(estimate_worker, seq_tasks, n_jobs=1, _env=env)
results = [r for r in results if r is not None]
g_time = time.time() - tstart
log.info(
f"Dataset sample {np.around(d.train_prev, decimals=2)} "
f"of dataset {dataset.name} finished "
f"[took {g_time:.4f}s]"
)
cr = CompReport(
results,
name=dataset.name,
train_prev=d.train_prev,
valid_prev=d.validation_prev,
g_time=g_time,
)
dr += cr
except Exception as e:
log.warning(
f"Dataset sample {np.around(d.train_prev, decimals=2)} "
f"of dataset {dataset.name} failed. "
f"Exception: {e}"
)
traceback(e)
return dr