95 lines
2.6 KiB
Python
95 lines
2.6 KiB
Python
from statistics import mean
|
|
from typing import Dict
|
|
from sklearn.base import BaseEstimator
|
|
from sklearn.model_selection import cross_validate
|
|
from quapy.data import LabelledCollection
|
|
from garg22_ATC.ATC_helper import (
|
|
find_ATC_threshold,
|
|
get_ATC_acc,
|
|
get_entropy,
|
|
get_max_conf,
|
|
)
|
|
import numpy as np
|
|
from jiang18_trustscore.trustscore import TrustScore
|
|
|
|
|
|
def kfcv(c_model: BaseEstimator, validation: LabelledCollection) -> Dict:
|
|
scoring = ["f1_macro"]
|
|
scores = cross_validate(c_model, validation.X, validation.y, scoring=scoring)
|
|
return {"f1_score": mean(scores["test_f1_macro"])}
|
|
|
|
|
|
def ATC_MC(
|
|
c_model: BaseEstimator,
|
|
validation: LabelledCollection,
|
|
test: LabelledCollection,
|
|
predict_method="predict_proba",
|
|
):
|
|
c_model_predict = getattr(c_model, predict_method)
|
|
|
|
## Load ID validation data probs and labels
|
|
val_probs, val_labels = c_model_predict(validation.X), validation.y
|
|
|
|
## Load OOD test data probs
|
|
test_probs = c_model_predict(test.X)
|
|
|
|
## score function, e.g., negative entropy or argmax confidence
|
|
val_scores = get_max_conf(val_probs)
|
|
val_preds = np.argmax(val_probs, axis=-1)
|
|
|
|
test_scores = get_max_conf(test_probs)
|
|
|
|
_, ATC_thres = find_ATC_threshold(val_scores, val_labels == val_preds)
|
|
ATC_accuracy = get_ATC_acc(ATC_thres, test_scores)
|
|
|
|
return {
|
|
"true_acc": 100 * np.mean(np.argmax(test_probs, axis=-1) == test.y),
|
|
"pred_acc": ATC_accuracy,
|
|
}
|
|
|
|
|
|
def ATC_NE(
|
|
c_model: BaseEstimator,
|
|
validation: LabelledCollection,
|
|
test: LabelledCollection,
|
|
predict_method="predict_proba",
|
|
):
|
|
c_model_predict = getattr(c_model, predict_method)
|
|
|
|
## Load ID validation data probs and labels
|
|
val_probs, val_labels = c_model_predict(validation.X), validation.y
|
|
|
|
## Load OOD test data probs
|
|
test_probs = c_model_predict(test.X)
|
|
|
|
## score function, e.g., negative entropy or argmax confidence
|
|
val_scores = get_entropy(val_probs)
|
|
val_preds = np.argmax(val_probs, axis=-1)
|
|
|
|
test_scores = get_entropy(test_probs)
|
|
|
|
_, ATC_thres = find_ATC_threshold(val_scores, val_labels == val_preds)
|
|
ATC_accuracy = get_ATC_acc(ATC_thres, test_scores)
|
|
|
|
return {
|
|
"true_acc": 100 * np.mean(np.argmax(test_probs, axis=-1) == test.y),
|
|
"pred_acc": ATC_accuracy,
|
|
}
|
|
|
|
|
|
def trust_score(
|
|
c_model: BaseEstimator,
|
|
validation: LabelledCollection,
|
|
test: LabelledCollection,
|
|
predict_method="predict",
|
|
):
|
|
c_model_predict = getattr(c_model, predict_method)
|
|
|
|
test_pred = c_model_predict(test.X)
|
|
|
|
trust_model = TrustScore()
|
|
trust_model.fit(validation.X, validation.y)
|
|
|
|
return trust_model.get_score(test.X, test_pred)
|
|
|