1
0
Fork 0
QuaPy/distribution_matching/commons.py

110 lines
3.9 KiB
Python
Raw Normal View History

import numpy as np
import pandas as pd
from distribution_matching.method_kdey import KDEy
2023-10-13 17:34:26 +02:00
from distribution_matching.method_kdey_closed import KDEyclosed
from distribution_matching.method_kdey_closed_efficient_correct import KDEyclosed_efficient_corr
from quapy.method.aggregative import EMQ, CC, PCC, DistributionMatching, PACC, HDy, OneVsAllAggregative, ACC
from distribution_matching.method_dirichlety import DIRy
from sklearn.linear_model import LogisticRegression
2023-12-06 16:55:06 +01:00
from distribution_matching.method_kdey_closed_efficient import KDEyclosed_efficient
# the full list of methods tested in the paper (reported in the appendix)
METHODS = ['ACC', 'PACC', 'HDy-OvA', 'DM-T', 'DM-HD', 'KDEy-HD', 'DM-CS', 'KDEy-CS', 'DIR', 'EMQ', 'EMQ-BCTS', 'KDEy-ML']
# uncomment this other list for the methods shown in the body of the paper (the other methods are not comparable in performance)
#METHODS = ['PACC', 'DM-T', 'DM-HD', 'KDEy-HD', 'DM-CS', 'KDEy-CS', 'EMQ', 'KDEy-ML']
2023-10-02 17:50:12 +02:00
BIN_METHODS = [x.replace('-OvA', '') for x in METHODS]
hyper_LR = {
'classifier__C': np.logspace(-3,3,7),
'classifier__class_weight': ['balanced', None]
2023-10-13 17:34:26 +02:00
}
2023-12-06 16:55:06 +01:00
hyper_kde = {
'bandwidth': np.linspace(0.01, 0.2, 20)
}
nbins_range = [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 64]
def new_method(method, **lr_kwargs):
lr = LogisticRegression(**lr_kwargs)
if method == 'CC':
param_grid = hyper_LR
quantifier = CC(lr)
elif method == 'PCC':
param_grid = hyper_LR
quantifier = PCC(lr)
elif method == 'ACC':
param_grid = hyper_LR
quantifier = ACC(lr)
elif method == 'PACC':
param_grid = hyper_LR
quantifier = PACC(lr)
2023-12-06 16:55:06 +01:00
elif method in ['KDEy-HD']:
param_grid = {**hyper_kde, **hyper_LR}
quantifier = KDEy(lr, target='min_divergence', divergence='HD', montecarlo_trials=10000, val_split=10)
elif method == 'KDEy-CS':
param_grid = {**hyper_kde, **hyper_LR}
quantifier = KDEyclosed_efficient_corr(lr, val_split=10)
elif method == 'KDEy-ML':
2023-12-06 16:55:06 +01:00
param_grid = {**hyper_kde, **hyper_LR}
quantifier = KDEy(lr, target='max_likelihood', val_split=10)
elif method == 'DIR':
param_grid = hyper_LR
quantifier = DIRy(lr)
elif method == 'EMQ':
param_grid = hyper_LR
quantifier = EMQ(lr)
2023-12-06 16:55:06 +01:00
elif method == 'EMQ-BCTS':
method_params = {'exact_train_prev': [False], 'recalib': ['bcts']}
param_grid = {**method_params, **hyper_LR}
quantifier = EMQ(lr)
2023-10-30 09:41:52 +01:00
elif method == 'HDy':
param_grid = hyper_LR
quantifier = HDy(lr)
elif method == 'HDy-OvA':
param_grid = {'binary_quantifier__' + key: val for key, val in hyper_LR.items()}
quantifier = OneVsAllAggregative(HDy(lr))
elif method == 'DM-T':
method_params = {
2023-12-06 16:55:06 +01:00
'nbins': nbins_range,
'val_split': [10],
'divergence': ['topsoe']
}
param_grid = {**method_params, **hyper_LR}
quantifier = DistributionMatching(lr)
elif method == 'DM-HD':
method_params = {
2023-12-06 16:55:06 +01:00
'nbins': nbins_range,
'val_split': [10],
'divergence': ['HD']
}
param_grid = {**method_params, **hyper_LR}
quantifier = DistributionMatching(lr)
elif method == 'DM-CS':
method_params = {
2023-12-06 16:55:06 +01:00
'nbins': nbins_range,
'val_split': [10],
'divergence': ['CS']
}
param_grid = {**method_params, **hyper_LR}
quantifier = DistributionMatching(lr)
else:
raise NotImplementedError('unknown method', method)
return param_grid, quantifier
def show_results(result_path):
df = pd.read_csv(result_path+'.csv', sep='\t')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"])
print(pv)