1
0
Fork 0
QuaPy/examples/ifcb_experiments.py

50 lines
1.5 KiB
Python
Raw Normal View History

2024-02-08 14:33:22 +01:00
import numpy as np
2023-11-08 11:07:47 +01:00
import quapy as qp
from sklearn.linear_model import LogisticRegression
2024-02-08 14:33:22 +01:00
from quapy.model_selection import GridSearchQ
from quapy.evaluation import evaluation_report
2023-11-08 11:07:47 +01:00
2024-02-08 14:33:22 +01:00
print('Quantifying the IFCB dataset with PACC\n')
# model selection
print('loading dataset for model selection...', end='')
train, val_gen = qp.datasets.fetch_IFCB(for_model_selection=True, single_sample_train=True)
print('[done]')
print(f'\ttraining size={len(train)}, features={train.X.shape[1]}, classes={train.n_classes}')
print(f'\tvalidation samples={val_gen.total()}')
print('model selection starts')
quantifier = qp.method.aggregative.PACC(LogisticRegression())
mod_sel = GridSearchQ(
quantifier,
param_grid={
'classifier__C': np.logspace(-3,3,7),
'classifier__class_weight': [None, 'balanced']
},
protocol=val_gen,
refit=False,
n_jobs=-1,
verbose=True,
raise_errors=True
).fit(train)
print(f'model selection chose hyperparameters: {mod_sel.best_params_}')
quantifier = mod_sel.best_model_
print('loading dataset for test...', end='')
train, test_gen = qp.datasets.fetch_IFCB(for_model_selection=False, single_sample_train=True)
print('[done]')
print(f'\ttraining size={len(train)}, features={train.X.shape[1]}, classes={train.n_classes}')
print(f'\ttest samples={test_gen.total()}')
print('training on the whole dataset before test')
quantifier.fit(train)
print('testing...')
report = evaluation_report(quantifier, protocol=test_gen, error_metrics=['mae'], verbose=True)
print(report.mean())