2022-05-25 19:14:33 +02:00
|
|
|
import unittest
|
|
|
|
from sklearn.linear_model import LogisticRegression
|
|
|
|
from quapy.method.aggregative import *
|
|
|
|
|
|
|
|
|
|
|
|
class HierarchyTestCase(unittest.TestCase):
|
|
|
|
|
|
|
|
def test_aggregative(self):
|
|
|
|
lr = LogisticRegression()
|
|
|
|
for m in [CC(lr), PCC(lr), ACC(lr), PACC(lr)]:
|
|
|
|
self.assertEqual(isinstance(m, AggregativeQuantifier), True)
|
|
|
|
|
|
|
|
def test_binary(self):
|
|
|
|
lr = LogisticRegression()
|
|
|
|
for m in [HDy(lr)]:
|
|
|
|
self.assertEqual(isinstance(m, BinaryQuantifier), True)
|
|
|
|
|
|
|
|
def test_probabilistic(self):
|
|
|
|
lr = LogisticRegression()
|
|
|
|
for m in [CC(lr), ACC(lr)]:
|
2024-01-29 09:43:29 +01:00
|
|
|
self.assertEqual(isinstance(m, AggregativeCrispQuantifier), True)
|
2023-11-15 10:55:13 +01:00
|
|
|
self.assertEqual(isinstance(m, AggregativeSoftQuantifier), False)
|
2022-05-25 19:14:33 +02:00
|
|
|
for m in [PCC(lr), PACC(lr)]:
|
2024-01-29 09:43:29 +01:00
|
|
|
self.assertEqual(isinstance(m, AggregativeCrispQuantifier), False)
|
2023-11-15 10:55:13 +01:00
|
|
|
self.assertEqual(isinstance(m, AggregativeSoftQuantifier), True)
|
2022-05-25 19:14:33 +02:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|